Citation: Bumei Zheng, Yufeng Wan, Weiya Yang, Fengxiang Ling, Hong Xie, Xiangchen Fang, Hongchen Guo. Mechanism of seeding in hydrothermal synthesis of zeolite Beta with organic structure-directing agent-free gel[J]. Chinese Journal of Catalysis, ;2014, 35(11): 1800-1810. doi: 10.1016/S1872-2067(14)60089-9 shu

Mechanism of seeding in hydrothermal synthesis of zeolite Beta with organic structure-directing agent-free gel

  • Corresponding author: Hongchen Guo, 
  • Received Date: 1 March 2014
    Available Online: 21 March 2014

  • The organic structure-directing agent-free synthesis of zeolite Beta was carried out using several zeolite Beta seeds that differed in SiO2/Al2O3 ratio and crystal size. The synthesis was studied using X-ray diffraction, X-ray fluorescence, scanning electron microscopy, transmission electron microscopy, ultraviolet-Raman spectroscopy, infrared spectroscopy, and N2 physisorption. Synthesis was successful using different zeolite Beta seeds including pure silica seeds. During the induction period, the seeds underwent dissolution. The SiO2/Al2O3 ratio and crystal size, pretreatment (calcination), and seed addition time had a significant influence on seed dissolution behavior, crystallization process, and product. Morphological studies revealed that the seed residues produced by dissolution (except for pure silica) resulted in the formation of "immobilized" surface nuclei, which allowed for the dense growth of fresh small zeolite Beta crystals. The dissolved small seed fragments yielded dispersed nuclei, which formed relatively scattered small zeolite Beta crystals thought to be the main nuclei source of the pure silica seed. It is suggested that the use of an appropriately high SiO2/Al2O3 ratio, small size, and precalcined zeolite Beta seed is helpful for the synthesis of highly crystalline and pure zeolite Beta from the organic structure-directing agent-free gel.
  • 加载中
    1. [1]

      [1] Newsam J M, Treacy M M J, Koetsier W T, De Gruyter C B. Proc R Soc Lond A, 1988, 420: 375

    2. [2]

      [2] Higgins J B, LaPierre R B, Schlenker J L, Rohrman A C, Wood J D, Kerr G T, Rohrbaugh W J. Zeolites, 1988, 8: 446

    3. [3]

      [3] Varanasi S R, Kumar P, Puranik V R, Umarji A, Yashonath S. Microporous Mesoporous Mater, 2009, 125: 135

    4. [4]

      [4] Nur H, Ramli Z, Efendi J, Rahman A N A, Chandren S, Yuan L S. Catal Commun, 2011, 12: 822

    5. [5]

      [5] Wu Y H, Tian F P, Liu J, Song D, Jia C Y, Chen Y Y. Microporous Mesoporous Mater, 2012, 162: 168

    6. [6]

      [6] Batalha N, Morisset S, Pinard L, Maupin I, Lemberton J L, Lemos F, Pouilloux Y. Microporous Mesoporous Mater, 2013, 166: 161

    7. [7]

      [7] Horáček J, Šťávová G, Kelbichová V, Kubička D. Catal Today, 2013, 204: 38

    8. [8]

      [8] Mihályi R M, Lónyi F, Beyer H K, Szegedi Á, Kollár M, Pál-Borbély G, Valyon J. J Mol Catal A, 2013, 367: 77

    9. [9]

      [9] Mu X H, Wang D Z, Wang Y R, Lin M, Cheng S B, Shu X T. Chin J Catal (慕旭宏, 王殿中, 王永睿, 林民, 程时标, 舒兴田. 催化学报), 2013, 34: 69

    10. [10]

      [10] Wadlinger R L, Kerr G T, Rosinski E J. US Patent 3 308 069. 1967

    11. [11]

      [11] Caullet P, Hazm J, Guth J L, Joly J F, Lynch J, Raatz F. Zeolites, 1992, 12: 240

    12. [12]

      [12] Eapen M J, Reddy K S N, Shiralkar V P. Zeolites, 1994, 14: 295

    13. [13]

      [13] Mostowicz R, Testa F, Crea F, Aiello R, Fonseca A, Nagy J B. Zeolites, 1997, 18: 308

    14. [14]

      [14] Qi X L, Liu X Y, Lin B X. Chin J Catal (祁晓岚, 刘希尧, 林炳雄. 催化学报), 2000, 21: 75

    15. [15]

      [15] Xie B, Song J W, Ren L M, Ji Y Y, Li J X, Xiao F S. Chem Mater, 2008, 20: 4533

    16. [16]

      [16] Majano G, Delmotte L, Valtchev V, Mintova S. Chem Mater, 2009, 21: 4184

    17. [17]

      [17] Kamimura Y, Chaikittisilp W, Itabashi K, Shimojima A, Okubo T. Chem Asian J, 2010, 5: 2182

    18. [18]

      [18] Kamimura Y, Tanahashi S, Itabashi K, Sugawara A, Wakihara T, Shimojima A, Okubo T. J Phys Chem C, 2011, 115: 744

    19. [19]

      [19] Xie B, Zhang H Y, Yang C G, Liu S Y, Ren L M, Zhang L, Meng X J, Yilmaz B, Müller U, Xiao F S. Chem Commun, 2011, 47: 3945

    20. [20]

      [20] Zhang H Y, Xie B, Meng X J, Müller U, Yilmaz B, Feyen M, Maurer S, Gies H, Tatsumi T, Bao X H, Zhang W P, Vos D D, Xiao F S. Microporous Mesoporous Mater, 2013, 180: 123

    21. [21]

      [21] Iyoki K, Itabashi K, Okubo T. Chem Asian J, 2013, 8: 1419

    22. [22]

      [22] Itabashi K, Kamimura Y, Iyoki K, Shimojima A, Okubo T. J Am Chem Soc, 2012, 134: 11542

    23. [23]

      [23] Iyoki K, Itabashi K, Okubo T. Microporous Mesoporous Mater, 2014, 189: 22

    24. [24]

      [24] Cundy C S, Cox P A. Microporous Mesoporous Mater, 2005, 82: 1

    25. [25]

      [25] Camblor M A, Corma A, Valencia S. Microporous Mesoporous Mater, 1998, 25: 59

    26. [26]

      [26] Xu R R, Pang W Q. Chemistry: Zeolites and Porous Materials. Beijing: Science Press (徐如人, 庞文琴. 分子筛与多孔材料化学. 北京: 科学出版社), 2004. 130

    27. [27]

      [27] Kiricsi I, Flego C, Pazzuconi G, Parker W O Jr, Millini R, Perego C, Bellussi G. J Phys Chem, 1994, 98: 4627

    28. [28]

      [28] Blasco T, Camblor M A, Corma A, Esteve P, Guil J M, Martínez A, Perdigón-Melón J A, Valencia S. J Phys Chem B, 1998, 102: 75

    29. [29]

      [29] Tosheva L, Mihailova B, Valtchev V, Sterte J. Microporous Mesoporous Mater, 2001, 48: 31

    30. [30]

      [30] Mihailova B, Valtchev V, Mintova S, Faust A C, Petkov N, Bein T. Phys Chem Chem Phys, 2005, 7: 2756

    31. [31]

      [31] Majano G, Mintova S, Ovsitser O, Mihailova B, Bein T. Microporous Mesoporous Mater, 2005, 80: 227

  • 加载中
    1. [1]

      Kexin YanZhaoqi YeLingtao KongHe LiXue YangYahong ZhangHongbin ZhangYi Tang . Seed-Induced Synthesis of Disc-Cluster Zeolite L Mesocrystals with Ultrashort c-Axis: Morphology Control, Decoupled Mechanism, and Enhanced Adsorption. Acta Physico-Chimica Sinica, 2024, 40(9): 2308019-0. doi: 10.3866/PKU.WHXB202308019

    2. [2]

      Yongzhi LIHan ZHANGGangding WANGYanwei SUILei HOUYaoyu WANG . A two-dimensional metal-organic framework for the determination of nitrofurantoin and nitrofurazone in aqueous solution. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 245-253. doi: 10.11862/CJIC.20240307

    3. [3]

      Ruilan Fan Xiaoling Huang . 磷源的选择及三种含磷阻燃剂的合成与阻燃性. University Chemistry, 2025, 40(8): 181-191. doi: 10.12461/PKU.DXHX202410025

    4. [4]

      Yuting DUJing YUANPeiyao DENG . Synthesis and application of a fluorescent probe for the detection of reduced glutathione. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1331-1337. doi: 10.11862/CJIC.20240461

    5. [5]

      Benhua Wang Chaoyi Yao Yiming Li Qing Liu Minhuan Lan Guipeng Yu Yiming Luo Xiangzhi Song . 一种基于香豆素氟离子荧光探针的合成、表征及性能测试——“科研反哺教学”在有机化学综合实验教学中的探索与实践. University Chemistry, 2025, 40(6): 201-209. doi: 10.12461/PKU.DXHX202408070

    6. [6]

      南开大学师唯/华北电力大学(保定)刘景维:二维配位聚合物中有序的亲锂冠醚位点用于无枝晶锂沉积

      . CCS Chemistry, 2025, 7(0): -.

    7. [7]

      Ye WangRuixiang GeXiang LiuJing LiHaohong Duan . An Anion Leaching Strategy towards Metal Oxyhydroxides Synthesis for Electrocatalytic Oxidation of Glycerol. Acta Physico-Chimica Sinica, 2024, 40(7): 2307019-0. doi: 10.3866/PKU.WHXB202307019

    8. [8]

      Huafeng SHI . Construction of MnCoNi layered double hydroxide@Co-Ni-S amorphous hollow polyhedron composite with excellent electrocatalytic oxygen evolution performance. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1380-1386. doi: 10.11862/CJIC.20240378

    9. [9]

      Kexin DongChuqi ShenRuyu YanYanping LiuChunqiang ZhuangShijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-0. doi: 10.3866/PKU.WHXB202310013

    10. [10]

      Jiaojiao Yu Bo Sun Na Li Cong Wen Wei Li . Improvement of Classical Organic Experiment Based on the “Reverse-Step Optimization Method”: Taking Synthesis of Ethyl Acetate as an Example. University Chemistry, 2025, 40(3): 333-341. doi: 10.12461/PKU.DXHX202405177

    11. [11]

      Xiaowei TANGShiquan XIAOJingwen SUNYu ZHUXiaoting CHENHaiyan ZHANG . A zinc complex for the detection of anthrax biomarker. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1850-1860. doi: 10.11862/CJIC.20240173

    12. [12]

      Hongwei Ma Hui Li . Three Methods for Structure Determination from Powder Diffraction Data. University Chemistry, 2024, 39(3): 94-102. doi: 10.3866/PKU.DXHX202310035

    13. [13]

      Xin HanZhihao ChengJinfeng ZhangJie LiuCheng ZhongWenbin Hu . Design of Amorphous High-Entropy FeCoCrMnBS (Oxy) Hydroxides for Boosting Oxygen Evolution Reaction. Acta Physico-Chimica Sinica, 2025, 41(4): 2404023-0. doi: 10.3866/PKU.WHXB202404023

    14. [14]

      Liang TANGJingfei NIKang XIAOXiangmei LIU . Synthesis and X-ray imaging application of lanthanide-organic complex-based scintillators. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1892-1902. doi: 10.11862/CJIC.20240139

    15. [15]

      Yingran Liang Fei WangJiabao Sun Hongtao Zheng Zhenli Zhu . Construction and Application of a New Experimental Device for Determination of Alkaline Metal Elements by Plasma Atomic Emission Spectrometry Based on Solution Cathode Glow Discharge: An Alternative Approach for Fundamental Teaching Experiments in Emission Spectroscopy. University Chemistry, 2024, 39(5): 380-387. doi: 10.3866/PKU.DXHX202312024

    16. [16]

      Jiakun BAITing XULu ZHANGJiang PENGYuqiang LIJunhui JIA . A red-emitting fluorescent probe with a large Stokes shift for selective detection of hypochlorous acid. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1095-1104. doi: 10.11862/CJIC.20240002

    17. [17]

      Haiping Wang . A Streamlined Method for Drawing Lewis Structures Using the Valence State of Outer Atoms. University Chemistry, 2024, 39(8): 383-388. doi: 10.12461/PKU.DXHX202401073

    18. [18]

      Juan Yuan Bin Zhang Jinping Wu Mengfan Wang . Design of a Comprehensive Experiment on Preparation and Characterization of Cu2(Salen)2 Nanomaterials with Two Distinct Morphologies. University Chemistry, 2024, 39(10): 420-425. doi: 10.3866/PKU.DXHX202402014

    19. [19]

      Yinyin Qian Rui Xu . Utilizing VESTA Software in the Context of Material Chemistry: Analyzing Twin Crystal Nanostructures in Indium Antimonide. University Chemistry, 2024, 39(3): 103-107. doi: 10.3866/PKU.DXHX202307051

    20. [20]

      Jingzhuo TianChaohong GuanHaobin HuEnzhou LiuDongyuan Yang . Waste plastics promoted photocatalytic H2 evolution over S-scheme NiCr2O4/twinned-Cd0.5Zn0.5S homo-heterojunction. Acta Physico-Chimica Sinica, 2025, 41(6): 100068-0. doi: 10.1016/j.actphy.2025.100068

Metrics
  • PDF Downloads(0)
  • Abstract views(378)
  • HTML views(11)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return