Citation:
Zili Wu. Multi-wavelength Raman spectroscopy study of supported vanadia catalysts:Structure identification and quantification[J]. Chinese Journal of Catalysis,
;2014, 35(10): 1591-1608.
doi:
10.1016/S1872-2067(14)60082-6
-
Revealing the structure of supported metal oxide catalysts is a prerequisite for establishing the structure-catalysis relationship. Among a variety of characterization techniques, multi-wavelength Raman spectroscopy, combining resonance Raman and non-resonance Raman with different excitation wavelengths, has recently emerged as a particularly powerful tool in not only identifying but also quantifying the structure of supported metal oxide clusters. In this review, we make use of two supported vanadia systems, VOx/SiO2 and VOx/CeO2, as examples to showcase how one can employ this technique to investigate the heterogeneous structure of active oxide clusters and to understand the complex interaction between the oxide clusters and the support. The qualitative and quantitative structural information gained from the multi-wavelength Raman spectroscopy can be utilized to provide fundamental insights for designing more efficient supported metal oxide catalysts.
-
Keywords:
- Multi-wavelength,
- Raman spectroscopy,
- Resonance Raman,
- Vanadia,
- Silica,
- Ceria
-
-
-
[1]
[1] Banares M A, Wach I E. J Raman Spectr, 2002, 33: 359
-
[2]
[2] Wachs I E, Roberts C A. Chem Soc Rev, 2010, 39: 5002
-
[3]
[3] Banares M A, Mestl G. Adv Catal, 2009, 52: 43
-
[4]
[4] Stavitski E, Weckhuysen B M. Chem Soc Rev, 2010, 39: 4615
-
[5]
[5] Kim H, Kosuda K M, Van Duyne R P, Stair P C. Chem Soc Rev, 2010, 39: 4820
-
[6]
[6] Wu Z L, Kim H S, Stair P C, Rugmini S, Jackson S D. J Phys Chem B, 2005, 109: 2793
-
[7]
[7] Kim H S, Zygmunt S A, Stair P C, Zapol P, Curtiss L A. J Phys Chem C, 2009, 113: 8836
-
[8]
[8] Kim H S, Stair P C. J Phys Chem A, 2009, 113: 4346
-
[9]
[9] Xiong G, Feng Z C, Li J, Yang Q H, Ying P L, Xin Q, Li C. J Phys Chem B, 2000, 104: 3581
-
[10]
[10] Li M J, Feng Z H, Xiong G, Ying P L, Xin Q, Li C. J Phys Chem B, 2001, 105: 8107
-
[11]
[11] Li C, Xiong G, Xin Q, Liu J K, Ying P L, Feng Z C, Li J, Yang W B, Wang Y Z, Wang G R, Liu X Y, Lin M, Wang X Q, Min E Z. Angew Chem Int Ed, 1999, 38: 2220
-
[12]
[12] Stair P C. Adv Catal, 2007, 51: 75
-
[13]
[13] Fan F T, Feng Z C, Li C. Acc Chem Res, 2010, 43: 378
-
[14]
[14] Wang J Y, Li G N, Ju X H, Xia H A, Fan F T, Wang J H, Feng Z C, Li C. J Catal, 2013, 301: 77
-
[15]
[15] Guo Q, Sun K J, Feng Z C, Li G N, Guo M L, Fan F T, Li C. Chem Eur J, 2012, 18: 13854
-
[16]
[16] Jin S Q, Guo M L, Fan F T, Yang J X, Zhang Y, Huang B K, Feng Z C, Li C. J Raman Spectr, 2013, 44: 266
-
[17]
[17] Kim H, Ferguson G A, Cheng L, Zygmunt S A, Stair P C, Curtiss L A. J Phys Chem C, 2012, 116: 2927
-
[18]
[18] López I, Ertem M Z, Maji S, Benet-Buchholz J, Keidel A, Kuhlmann U, Hildebrandt P, Cramer C J, Batista V S, Llobet A. Angew Chem Int Ed, 2014, 53: 205
-
[19]
[19] Woertink J S, Smeets P J, Groothaert M H, Vance M A, Sels B F, Schoonheydt R A, Solomon E I. PNAS, 2009, 106: 18908
-
[20]
[20] Nitsche D, Hess C. J Raman Spectr, 2013, 44: 1733
-
[21]
[21] Wu Z L, Kim H-S, Stair P C. In: Hargraves J S J, Jackson S D eds. Metal Oxide Catalysis, 2008. 177
-
[22]
[22] Launay H, Loridant S, Pigamo A, Dubois J L, Millet J M M. J Catal, 2007, 246: 390
-
[23]
[23] Sun Q, Jehng J M, Hu H C, Herman R G, Wachs I E, Klie K. J Catal, 1997, 165: 91
-
[24]
[24] Banares M A, Cardoso J H, Agullo-Rueda F, Correa-Bueno J M, Fierro J L G. Catal Lett, 2000, 64: 191
-
[25]
[25] Weckhuysen B M, Kelle D E. Catal Today, 2003, 78: 25
-
[26]
[26] Wachs I E. Dalton Trans, 2013, 42: 11762
-
[27]
[27] Wu Z L, Dai S, Overbury S H. J Phys Chem C, 2010, 114: 412
-
[28]
[28] Wu Z L, Li M J, Overbury S H. ChemCatChem, 2012, 4: 1653
-
[29]
[29] Wu Z L, Schwartz V, Li M, Rondinone A J, Overbury S H. J Phys Chem Lett, 2012, 3: 1517
-
[30]
[30] Wu Z L, Rondinone A J, Ivanov I N, Overbury S H. J Phys Chem C, 2011, 115: 25368
-
[31]
[31] Gao X T, Bare S R, Weckhuysen B M, Wachs I E. J Phys Chem B, 1998, 102: 10842
-
[32]
[32] Xie S B, Iglesia E, Bell A T. Langmuir, 2000, 16: 7162
-
[33]
[33] Wang C B, Deo G, Wachs I E. J Catal, 1998, 178: 640
-
[34]
[34] Jehng J M, Hu H C, Gao X T, Wachs I E. Catal Today, 1996, 28: 335
-
[35]
[35] Das N, Eckert H, Hu H C, Wachs I E, Walzer J F, Feher F J. J Phys Chem, 1993, 97: 8240
-
[36]
[36] Lee E L, Wachs I E. J Phys Chem C, 2007, 111: 14410
-
[37]
[37] Dinse A, Ozarowski A, Hess C, Schomacker R, Dinse K P. J Phys Chem C, 2008, 112: 17664
-
[38]
[38] Wachs I E, Weckhuysen B M. Appl Catal A, 1997, 157: 67
-
[39]
[39] Keller D E, Koningsberger D C, Weckhuysen B M. J Phys Chem B, 2006, 110: 14313
-
[40]
[40] Liu Y M, Cao Y, Yi N, Feng W L, Dai W L, Yan S R, He H Y, Fan K N. J Catal, 2004, 224: 417
-
[41]
[41] Khodakov A, Olthof B, Bell A T, Iglesia E. J Catal, 1999, 181: 205
-
[42]
[42] Magg N, Immaraporn B, Giorgi J B, Schroeder T, Baumer M, Dobler J, Wu Z L, Kondratenko E, Cherian M, Baerns M, Stair P C, Sauer J, Freund H J. J Catal, 2004, 226: 88
-
[43]
[43] Gijzeman O L J, van Lingen J N J, van Lenthe J H, Tinnemans S J, Keller D E, Weckhuysen B M. Chem Phys Lett, 2004, 397: 277
-
[44]
[44] van Lingen J N J, Gijzerman O L J, Weckhuysen B M, van Lenthe J H. J Catal, 2006, 239: 34
-
[45]
[45] Keller D E, Visser T, Soulimani F, Koningsberger D C, Weckhuysen B M. Vib Spectr, 2007, 43: 140
-
[46]
[46] Moisii C, van de Burgt L J, Stiegman A E. Chem Mater, 2008, 20: 3927
-
[47]
[47] Moisii C, Curran M D, van de Burgt L J, Stiegman A E. J Mater Chem, 2005,15: 3519
-
[48]
[48] Lee E L, Wachs I E. J Phys Chem C, 2008, 112: 6487
-
[49]
[49] Guimond S, Abu Haija M, Kaya S, Lu J, Weissenrieder J, Shaikhutdinov S, Kuhlenbeck H, Freund H J, Dobler J, Sauer J. Top Catal, 2006, 38: 117
-
[50]
[50] Lewandowska A E, Banares M A, Tielens F, Che M, Dzwigaj S. J Phys Chem C, 2010, 114: 19771
-
[51]
[51] Chlosta R, Tzolova-Muller G, Schlogl R, Hess C. Catal Sci Technol, 2011,1: 1175
-
[52]
[52] van Lingen J N J, Gijzeman O L J, Havenith R W A, van Lenthe J H. J Phys Chem C, 2007, 111: 7071
-
[53]
[53] Islam M M, Costa D, Calatayud M, Tielens F. J Phys Chem C, 2009, 113: 10740
-
[54]
[54] Ohde C, Brandt M, Limberg C, Doebler J, Ziemer B, Sauer J. Dalton Trans, 2008: 326
-
[55]
[55] Todorova T K, Dobler J, Sierka M, Sauer J. J Phys Chem C, 2009, 113: 8336
-
[56]
[56] Döbler J, Pritzsche M, Sauer J. J Phys Chem C, 2009, 113: 12454
-
[57]
[57] Burcham L J, Deo G, Gao X T, Wachs I E. Top Catal, 2000, 11: 85
-
[58]
[58] Keller D E, de Groot F M F, Koningsberger D C, Weckhuysen B M. J Phys Chem B, 2005, 109: 10223
-
[59]
[59] Molinari J E, Wachs I E. J Am Chem Soc, 2010, 132: 12559
-
[60]
[60] Cavalleri M, Hermann K, Knop-Gericke A, Havecker M, Herbert R, Hess C, Oestereich A, Dobler J, Schlogl R. J Catal, 2009, 262: 215
-
[61]
[61] Hävecker M, Cavalleri M, Herbert R, Follath R, Knop-Gericke A, Hess C, Hermann K, Schlögl R. Phys Status Solidi B, 2009, 246: 1459
-
[62]
[62] Bulanek R, Capek L, Setnicka M, Cicmanec P. J Phys Chem C, 2011, 115: 12430
-
[63]
[63] Galeener F L, Mikkelsen J C. Phys Rev B, 1981, 23: 5527
-
[64]
[64] Gao X T, Wachs I E. J Phys Chem B, 2000,104: 1261
-
[65]
[65] Tian H J, Ross E I, Wachs I E. J Phys Chem B, 2006, 110: 9593
-
[66]
[66] Albrecht A C. J Chem Phys, 1961, 34: 1476
-
[67]
[67] Koningstein J A. J Mol Spectr, 1968, 28: 309
-
[68]
[68] Tang J, Albrecht A C. In: Szymanski H A ed. Raman Spectroscopy. New York: Plenum, 1970. 33
-
[69]
[69] Clark R J H, Stewart B. In: Inorganic Chemistry and Spectroscopy. Berlin: Springer Berlin Heidelberg, 1979, 36: 1
-
[70]
[70] Long D A. The Raman Effect: A Unified Treatment of the Theory of Raman Scattering by Molecules. New York: Wiley, 2002. 1
-
[71]
[71] Cotton F A, Wing R M. Inorg Chem, 1965, 4: 867
-
[72]
[72] Wu Z L, Zhang C, Stair P C. Catal Today, 2006, 113: 40
-
[73]
[73] Wu Z, Stair P C, Rugmini S, Jackson S D. J Phys Chem C, 2007, 111: 16460
-
[74]
[74] Gao X T, Banares M A, Wachs I E. J Catal, 1999, 188: 325
-
[75]
[75] Daniell W, Ponchel A, Kuba S, Anderle F, Weingand T, Gregory D H, Knoezinger H. Top Catal, 2002, 20: 65
-
[76]
[76] Martinez-Huerta M V, Coronado J M, Fernandez-Garcia M, Iglesias-Juez A, Deo G, Fierro J L G, Banares M A. J Catal, 2004, 225: 240
-
[77]
[77] Martinez-Huerta M V, Deo G, Fierro J L G, Banares M A. J Phys Chem C, 2007, 111: 18708
-
[78]
[78] Martinez-Huerta M V, Deo G, Fierro J L G, Banares M A. J Phys Chem C, 2008, 112: 11441
-
[79]
[79] Ganduglia-Pirovano M V, Popa C, Sauer J, Abbott H, Uhl A, Baron M, Stacchiola D, Bondarchuk O, Shaikhutdinov S, Freund H J. J Am Chem Soc, 2010, 132: 2345
-
[80]
[80] Taylor M N, Carley A F, Davies T E, Taylor S H. Top Catal, 2009, 52: 1660
-
[81]
[81] Abbott H L, Uhl A, Baron M, Lei Y, Meyer R J, Stacchiola D J, Bondarchuk O, Shaikhutdinov S, Freund H J. J Catal, 2010, 272: 82
-
[82]
[82] Feng T, Vohs J M. J Catal, 2004, 221: 619
-
[83]
[83] Wong G S, Concepcion M R, Vohs J M. J Phys Chem B, 2002, 106: 6451
-
[84]
[84] Wu Y N, Guo M, Chen F, Luo M F. Acta Phys-Chim Sin, 2010, 26: 2417
-
[85]
[85] Matta J, Courcot D, Abi-Aad E, Aboukais A. Chem Mater, 2002, 14: 4118
-
[86]
[86] Jehng J M, Deo G, Weckhuysen B M, Wachs I E. J Mol Catal A, 1996, 110: 41
-
[87]
[87] Wachs I E, Jehng J M, Deo G, Weckhuysen B M, Guliants V V, Benziger J B, Sundaresan S. J Catal, 1997, 170: 75
-
[88]
[88] Reddy B M, Khan A, Yamada Y, Kobayashi T, Loridant S, Volta J C. J Phys Chem B, 2003, 107: 5162
-
[89]
[89] Banares M A, Martinez-Huerta M V, Gao X T, Wachs I E, Fierro J L G. Stud Surf Sci Catal, 2000, 130: 3125
-
[90]
[90] Burcham L J, Wachs I E. Catal Today, 1999, 49: 467
-
[91]
[91] Baron M, Abbott H, Bondarchuk O, Stacchiola D, Uhl A, Shaikhutdinov S, Freund H J, Popa C, Ganduglia-Pirovano M V, Sauer J. Angew Chem Int Ed, 2009, 48: 8006
-
[92]
[92] Popa C, Ganduglia-Pirovano M V, Sauer J. J Phys Chem C, 2011, 115: 7399
-
[93]
[93] Shapovalov V, Metiu H. J Phys Chem C, 2007, 111: 14179
-
[94]
[94] Qiao Z A, Wu Z L, Dai S. ChemSusChem, 2013, 6: 1821
-
[95]
[95] Wu Z L, Li M J, Howe J, Meyer H M, Overbury S H. Langmuir, 2010, 26: 16595
-
[96]
[96] Taniguchi T, Watanabe T, Sugiyama N, Subramani A K, Wagata H, Matsushita N, Yoshimura M. J Phys Chem C, 2009, 113: 19789
-
[97]
[97] Guo M, Lu J Q, Wu Y N, Wang Y J, Luo M F. Langmuir, 2011, 27: 3872
-
[98]
[98] Li L, Chen F, Lu J Q, Luo M F. J Phys Chem A, 2011, 115: 7972
-
[99]
[99] Li L, Hu G S, Lu J Q, Luo M F. Acta Phys-Chim Sin, 2012, 28: 1012
-
[100]
[100] Zhou K B, Wang X, Sun X M, Peng Q, Li Y D. J Catal, 2005, 229: 206
-
[101]
[101] Mai H X, Sun L D, Zhang Y W, Si R, Feng W, Zhang H P, Liu H C, Yan C H. J Phys Chem B, 2005, 109: 24380
-
[102]
[102] Trovarelli A. Catal Rev-Sci Eng, 1996, 38: 439
-
[103]
[103] Pushkarev V V, Kovalchuk V I, d'Itri J L. J Phys Chem B, 2004, 108: 5341
-
[104]
[104] Li C, Domen K, Maruya K, Onishi T. J Am Chem Soc, 1989, 111: 7683
-
[105]
[105] Banares M A. Adv Mater, 2011, 23: 5293
-
[106]
[106] Nolan M, Fearon J E, Watson G W. Solid State Ionics, 2006, 177: 3069
-
[107]
[107] Nolan M, Grigoleit S, Sayle D C, Parker S C, Watson G W. Surf Sci, 2005, 576: 217
-
[108]
[108] Wu Z L, Li M J, Overbury S H. J Catal, 2012, 285: 61
-
[1]
-
-
-
[1]
Jiajie Li , Xiaocong Ma , Jufang Zheng , Qiang Wan , Xiaoshun Zhou , Yahao Wang . Recent Advances in In-Situ Raman Spectroscopy for Investigating Electrocatalytic Organic Reaction Mechanisms. University Chemistry, 2025, 40(4): 261-276. doi: 10.12461/PKU.DXHX202406117
-
[2]
Tianlong Zhang , Rongling Zhang , Hongsheng Tang , Yan Li , Hua Li . Online Monitoring and Mechanistic Analysis of 3,5-diamino-1,2,4-triazole (DAT) Synthesis via Raman Spectroscopy: A Recommendation for a Comprehensive Instrumental Analysis Experiment. University Chemistry, 2024, 39(6): 303-311. doi: 10.3866/PKU.DXHX202312006
-
[3]
Zhuo WANG , Junshan ZHANG , Shaoyan YANG , Lingyan ZHOU , Yedi LI , Yuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067
-
[4]
Kaifu Zhang , Shan Gao , Bin Yang . Application of Theoretical Calculation with Fun Practice in Raman Spectroscopy Experimental Teaching. University Chemistry, 2025, 40(3): 62-67. doi: 10.12461/PKU.DXHX202404045
-
[5]
Yufan ZHAO , Jinglin YOU , Shixiang WANG , Guopeng LIU , Xiang XIA , Yingfang XIE , Meiqin SHENG , Feiyan XU , Kai TANG , Liming LU . Raman spectroscopic quantitative study of the melt microstructure in binary Li2O-GeO2 functional crystals. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1533-1544. doi: 10.11862/CJIC.20250063
-
[6]
Zhaoxuan ZHU , Lixin WANG , Xiaoning TANG , Long LI , Yan SHI , Jiaojing SHAO . Application of poly(vinyl alcohol) conductive hydrogel electrolytes in zinc ion batteries. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 893-902. doi: 10.11862/CJIC.20240368
-
[7]
Xiaoning TANG , Shu XIA , Jie LEI , Xingfu YANG , Qiuyang LUO , Junnan LIU , An XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149
-
[8]
Qiang Zhang , Yuanbiao Huang , Rong Cao . Imidazolium-Based Materials for CO2 Electroreduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2306040-0. doi: 10.3866/PKU.WHXB202306040
-
[9]
Yanhui Guo , Li Wei , Zhonglin Wen , Chaorong Qi , Huanfeng Jiang . Recent Progress on Conversion of Carbon Dioxide into Carbamates. Acta Physico-Chimica Sinica, 2024, 40(4): 2307004-0. doi: 10.3866/PKU.WHXB202307004
-
[10]
Zhiquan Zhang , Baker Rhimi , Zheyang Liu , Min Zhou , Guowei Deng , Wei Wei , Liang Mao , Huaming Li , Zhifeng Jiang . Insights into the Development of Copper-Based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-0. doi: 10.3866/PKU.WHXB202406029
-
[11]
Hailang JIA , Pengcheng JI , Hongcheng LI . Preparation and performance of nickel doped ruthenium dioxide electrocatalyst for oxygen evolution. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1632-1640. doi: 10.11862/CJIC.20240398
-
[12]
Chenye An , Sikandaier Abiduweili , Xue Guo , Yukun Zhu , Hua Tang , Dongjiang Yang . Hierarchical S-scheme Heterojunction of Red Phosphorus Nanoparticles Embedded Flower-like CeO2 Triggering Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(11): 2405019-0. doi: 10.3866/PKU.WHXB202405019
-
[13]
Caixia Lin , Zhaojiang Shi , Yi Yu , Jianfeng Yan , Keyin Ye , Yaofeng Yuan . Ideological and Political Design for the Electrochemical Synthesis of Benzoxathiazine Dioxide Experiment. University Chemistry, 2024, 39(2): 61-66. doi: 10.3866/PKU.DXHX202309005
-
[14]
Bing WEI , Jianfan ZHANG , Zhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201
-
[15]
Jianan Hong , Chenyu Xu , Yan Liu , Changqi Li , Menglin Wang , Yanwei Zhang . Decoding the interfacial competition between hydrogen evolution and CO2 reduction via edge-active-site modulation in photothermal catalysis. Acta Physico-Chimica Sinica, 2025, 41(9): 100099-0. doi: 10.1016/j.actphy.2025.100099
-
[16]
Bizhu Shao , Huijun Dong , Yunnan Gong , Jianhua Mei , Fengshi Cai , Jinbiao Liu , Dichang Zhong , Tongbu Lu . Metal-Organic Framework-Derived Nickel Nanoparticles for Efficient CO2 Electroreduction in Wide Potential Windows. Acta Physico-Chimica Sinica, 2024, 40(4): 2305026-0. doi: 10.3866/PKU.WHXB202305026
-
[17]
Yan Kong , Wei Wei , Lekai Xu , Chen Chen . Electrochemical Synthesis of Organonitrogen Compounds from N-integrated CO2 Reduction Reaction. Acta Physico-Chimica Sinica, 2024, 40(8): 2307049-0. doi: 10.3866/PKU.WHXB202307049
-
[18]
Xiaofei Liu , He Wang , Li Tao , Weimin Ren , Xiaobing Lu , Wenzhen Zhang . Electrocarboxylation of Benzylic Phosphates and Phosphinates with Carbon Dioxide. Acta Physico-Chimica Sinica, 2024, 40(9): 2307008-0. doi: 10.3866/PKU.WHXB202307008
-
[19]
Zhuomin Zhang , Hanbing Huang , Liangqiu Lin , Jingsong Liu , Gongke Li . Course Construction of Instrumental Analysis Experiment: Surface-Enhanced Raman Spectroscopy for Rapid Detection of Edible Pigments. University Chemistry, 2024, 39(2): 133-139. doi: 10.3866/PKU.DXHX202308034
-
[20]
Jingyi Chen , Fu Liu , Tiejun Zhu , Kui Cheng . Practice of Integrating Ideological and Political Education into Raman Spectroscopy Analysis Experiment Course. University Chemistry, 2024, 39(2): 140-146. doi: 10.3866/PKU.DXHX202310111
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(523)
- HTML views(63)