Citation: Jingjun Liu, Xuemin Jin, Weiwei Song, Feng Wang, Nan Wang, Ye Song. Facile preparation of modified carbon black-LaMnO3 hybrids and the effect of covalent coupling on the catalytic activity for oxygen reduction reaction[J]. Chinese Journal of Catalysis, ;2014, 35(7): 1173-1188. doi: 10.1016/S1872-2067(14)60066-8 shu

Facile preparation of modified carbon black-LaMnO3 hybrids and the effect of covalent coupling on the catalytic activity for oxygen reduction reaction

  • Corresponding author: Feng Wang, 
  • Received Date: 5 December 2013
    Available Online: 28 February 2014

    Fund Project: This work was supported by the National Natural Science Foundation of China (51272018, 51125007) (51272018, 51125007)D Program (2009BAE87B00). (2009BAE87B00)

  • Covalent coupling between LaMnO3 nanoparticles and carbon black to produce a composite catalyst for oxygen reduction reaction (ORR) was achieved by physical mixing of modified carbon and perovskite-type LaMnO3 nanoparticles, followed by sintering at different temperatures. Perovskite-type LaMnO3 nanoparticles were first synthesized via chemical precipitation, and the carbon support (Vulcan XC-72) was modified using graphitization, followed by HNO3 and ammonia treatments. The morphology and electronic states of the carbon black-LaMnO3 hybrid catalyst were characterized by scanning electron microscopy, X-ray diffraction, and X-ray photoelectron spectroscopy. The loaded LaMnO3 particles featured rod-like, three bars-like, and bamboo rod-like structures and were homogeneously dispersed in the carbon matrix that featured a hollow spherical structure. At a sintering temperature of about 300℃, C-O-M (M=La, Mn) bonds formed at the interface between the carbon and LaMnO3 nanoparticles. Electrochemical measurements in 1 mol/L NaOH showed that the carbon-LaMnO3 hybrid prepared at a LaMnO3/GCB mass ratio of 2:3 displayed the highest electrocatalytic activity towards ORR among all the synthesized hybrid catalysts. The electrocatalytic activity was comparable with that obtained by commercial Pt/C catalyst (E-TEK). The average electron transfer number of ORR was ~3.81, and the corresponding yield of the hydrogen peroxide intermediatewas ~9.5%. The remarkably improved electrocatalytic activity towards ORR was likely because of the formation of covalent bonds (C-O-M) between the LaMnO3 nanoparticles and carbon that can effectively enhance the ORR kinetics. This information is important to understand the physical origin of the electrocatalytic activity of carbon-supported rare earth oxides as catalysts for ORR.
  • 加载中
    1. [1]

      [1] Arico A S, Srinivasan S, Antonucci V. Fuel Cells, 2001, 1: 133

    2. [2]

      [2] Stamenkovic V R, Fowler B, Mun B S, Wang G F, Ross P N, Lucas C A, Markovic N M. Science, 2007, 315: 493

    3. [3]

      [3] Li S, Zhu G W, Qiu P, Rong G, Pan M. Chin J Catal (李赏, 朱广文, 邱鹏, 荣刚, 潘牧. 催化学报), 2011, 32: 624

    4. [4]

      [4] Rajesh B, Piotr Z. Nature, 2006, 443: 63

    5. [5]

      [5] Neburchilov V, Wang H J, Martin J J, Qu W. J Power Sources, 2010, 195: 1271

    6. [6]

      [6] Roche I, Chaınet E, Chatenet M, Vondrak J. J Phys Chem C, 2007, 111: 1434

    7. [7]

      [7] Lian Y Y, Li Y G, Wang H L, Zhou J G, Wang J, Regier T, Dai H J. Nature Mater, 2011, 1038: 3087

    8. [8]

      [8] Yang Z, Zhou X M, Nie H G, Yao Z, Huang S M. ACS Appl Mater Interfaces, 2011, 3: 2601

    9. [9]

      [9] Gong K P, Du F, Xia Z H, Durstock M, Dai L M. Science, 2009, 323: 760

    10. [10]

      [10] Wang S Y, Yu D S, Dai L M. J Am Chem Soc, 2011, 133: 5182

    11. [11]

      [11] Bao X H. Sci China Ser B (包信和. 中国科学B辑), 2009, 39: 1125

    12. [12]

      [12] Kou R, Shao Y Y, Mei D H, Nie Z M, Wang D H, Wang C M, Viswanathan V V, Park S, Aksay I A, Lin Y H, Wang Y, Liu J. J Am Chem Soc, 2011, 133: 2541

    13. [13]

      [13] Zhang J, Tang S H, Liao L Y, Yu W F. Chin J Catal (张洁, 唐水花, 廖龙渝, 郁卫飞. 催化学报), 2013, 34: 1051

    14. [14]

      [14] Cyganiuk A, Klimkiewicz R, Olejniczak A, Lukaszewicz J P. Carbon, 2010, 48: 99

    15. [15]

      [15] Cyganiuk A, Klimkiewicz R, Lukaszewicz J P. Mater Res Bull, 2011, 46: 327

    16. [16]

      [16] Shao Y Y, Yin G P, Gao Y Z, Shi P F. J Electrochem Soc, 2006, 153: 1093

    17. [17]

      [17] Li Z R, Little R, Dervishi E, Saini V, Xu Y, Biris A R, Lupa D, Trigwell S, Saini D, Biris A S. Chem Phys, 2008, 353: 25

    18. [18]

      [18] Yoshida A, Kaburagi Y, Hishiyama Y. Carbon, 2006, 44: 2333

    19. [19]

      [19] Gu J W, Zhao T S, Prabhuram J, Wang C W. Electrochim Acta, 2005, 50: 1973

    20. [20]

      [20] Terzyk A P. Colloids Surf A, 2001, 177: 23

    21. [21]

      [21] Zhou J S, Song H H, Ma L L, Chen X H. RSC Adv, 2011, 1: 782

    22. [22]

      [22] Santos L G R A, Freitas K S, Ticianelli E A. Electrochim Acta, 2009, 54: 5246

    23. [23]

      [23] Wang S L, Ma Y, Wang X L. Shandong Univ (王世励, 马英, 王雪琳. 山东大学学报), 1979, (4): 66

    24. [24]

      [24] Yeager E. Electrochim Acta, 1984, 29: 1527

    25. [25]

      [25] Mattevi C, Eda G, Agnoli S, Miller S, Mkhoyan K A, Celik O, Mastrogiovanni D, Granozzji G, Garfunkel E, Chhowalla M. Adv Funct Mater, 2009, 19: 2577

    26. [26]

      [26] Bagri A, Mattevi C, Acik M, Chabal Y J, Chhowalla M, Shenoy V B. Nat Chem, 2010, 2: 581

    27. [27]

      [27] Kim U J, Furtado C A, Liu X M, Chen G G, Eklund P C. J Am Chem Soc, 2005, 127: 15437

    28. [28]

      [28] Russo N, Fino D, Saracco G, Specchia V. J Catal, 2005, 229: 459

  • 加载中
    1. [1]

      Fangfang WANGJiaqi CHENWeiyin SUN . CuBi@Cu-MOF composite catalysts for electrocatalytic CO2 reduction to HCOOH. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 97-104. doi: 10.11862/CJIC.20240350

    2. [2]

      Jinyi Sun Lin Ma Yanjie Xi Jing Wang . Preparation and Electrocatalytic Nitrogen Reduction Performance Study of Vanadium Nitride@Nitrogen-Doped Carbon Composite Nanomaterials: A Recommended Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(4): 184-191. doi: 10.3866/PKU.DXHX202310094

    3. [3]

      Qianqian ZHULihui XUHong PANChengjian YAOHong ZHAONan MAXiaolin SHIZihan SHENWeijun ZHANGZhongjian WANG . Waste cotton fabric-ased porous carbon materials: Preparation and wave-absorbing properties. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1555-1564. doi: 10.11862/CJIC.20250040

    4. [4]

      Xiting Zhou Zhipeng Han Xinlei Zhang Shixuan Zhu Cheng Che Liang Xu Zhenyu Sun Leiduan Hao Zhiyu Yang . Dual Modulation via Ag-Doped CuO Catalyst and Iodide-Containing Electrolyte for Enhanced Electrocatalytic CO2 Reduction to Multi-Carbon Products: A Comprehensive Chemistry Experiment. University Chemistry, 2025, 40(7): 336-344. doi: 10.12461/PKU.DXHX202412070

    5. [5]

      Yan KongWei WeiLekai XuChen Chen . Electrochemical Synthesis of Organonitrogen Compounds from N-integrated CO2 Reduction Reaction. Acta Physico-Chimica Sinica, 2024, 40(8): 2307049-0. doi: 10.3866/PKU.WHXB202307049

    6. [6]

      Xinlong XUChunxue JINGYuzhen CHEN . Bimetallic MOF-74 and derivatives: Fabrication and efficient electrocatalytic biomass conversion. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1545-1554. doi: 10.11862/CJIC.20250046

    7. [7]

      Xue DongXiaofu SunShuaiqiang JiaShitao HanDawei ZhouTing YaoMin WangMinghui FangHaihong WuBuxing Han . Electrochemical CO2 Reduction to C2+ Products with Ampere-Level Current on Carbon-Modified Copper Catalysts. Acta Physico-Chimica Sinica, 2025, 41(3): 2404012-0. doi: 10.3866/PKU.WHXB202404012

    8. [8]

      Tao WangQin DongCunpu LiZidong Wei . Sulfur Cathode Electrocatalysis in Lithium-Sulfur Batteries: A Comprehensive Understanding. Acta Physico-Chimica Sinica, 2024, 40(2): 2303061-0. doi: 10.3866/PKU.WHXB202303061

    9. [9]

      Tongtong Zhao Yan Wang Shiyue Qin Liang Xu Zhenhua Li . New Experiment Development: Upgrading and Regeneration of Discarded PET Plastic through Electrocatalysis. University Chemistry, 2024, 39(3): 308-315. doi: 10.3866/PKU.DXHX202309003

    10. [10]

      Jiajie Li Xiaocong Ma Jufang Zheng Qiang Wan Xiaoshun Zhou Yahao Wang . Recent Advances in In-Situ Raman Spectroscopy for Investigating Electrocatalytic Organic Reaction Mechanisms. University Chemistry, 2025, 40(4): 261-276. doi: 10.12461/PKU.DXHX202406117

    11. [11]

      Jianchun Wang Ruyu Xie . The Fantastical Dance of Miss Electron: Contra-Thermodynamic Electrocatalytic Reactions. University Chemistry, 2025, 40(4): 331-339. doi: 10.12461/PKU.DXHX202406082

    12. [12]

      Xueting CaoShuangshuang ChaMing Gong . Interfacial Electrical Double Layer in Electrocatalytic Reactions: Fundamentals, Characterizations and Applications. Acta Physico-Chimica Sinica, 2025, 41(5): 100041-0. doi: 10.1016/j.actphy.2024.100041

    13. [13]

      Xinyi ZhangKai RenYanning LiuZhenyi GuZhixiong HuangShuohang ZhengXiaotong WangJinzhi GuoIgor V. ZatovskyJunming CaoXinglong Wu . Progress on Entropy Production Engineering for Electrochemical Catalysis. Acta Physico-Chimica Sinica, 2024, 40(7): 2307057-0. doi: 10.3866/PKU.WHXB202307057

    14. [14]

      Ye WangRuixiang GeXiang LiuJing LiHaohong Duan . An Anion Leaching Strategy towards Metal Oxyhydroxides Synthesis for Electrocatalytic Oxidation of Glycerol. Acta Physico-Chimica Sinica, 2024, 40(7): 2307019-0. doi: 10.3866/PKU.WHXB202307019

    15. [15]

      Lu ZhuoranLi ShengkaiLu YuxuanWang ShuangyinZou Yuqin . Cleavage of C―C Bonds for Biomass Upgrading on Transition Metal Electrocatalysts. Acta Physico-Chimica Sinica, 2024, 40(4): 2306003-0. doi: 10.3866/PKU.WHXB202306003

    16. [16]

      Qing LiGuangxun ZhangYuxia XuYangyang SunHuan Pang . P-Regulated Hierarchical Structure Ni2P Assemblies toward Efficient Electrochemical Urea Oxidation. Acta Physico-Chimica Sinica, 2024, 40(9): 2308045-0. doi: 10.3866/PKU.WHXB202308045

    17. [17]

      Wentao XuXuyan MoYang ZhouZuxian WengKunling MoYanhua WuXinlin JiangDan LiTangqi LanHuan WenFuqin ZhengYoujun FanWei Chen . Bimetal Leaching Induced Reconstruction of Water Oxidation Electrocatalyst for Enhanced Activity and Stability. Acta Physico-Chimica Sinica, 2024, 40(8): 2308003-0. doi: 10.3866/PKU.WHXB202308003

    18. [18]

      Yanhui GuoLi WeiZhonglin WenChaorong QiHuanfeng Jiang . Recent Progress on Conversion of Carbon Dioxide into Carbamates. Acta Physico-Chimica Sinica, 2024, 40(4): 2307004-0. doi: 10.3866/PKU.WHXB202307004

    19. [19]

      Xi Xu Chaokai Zhu Leiqing Cao Zhuozhao Wu Cao Guan . Experiential Education and 3D-Printed Alloys: Innovative Exploration and Student Development. University Chemistry, 2024, 39(2): 347-357. doi: 10.3866/PKU.DXHX202308039

    20. [20]

      Ruizhi DuanXiaomei WangPanwang ZhouYang LiuCan Li . The role of hydroxyl species in the alkaline hydrogen evolution reaction over transition metal surfaces. Acta Physico-Chimica Sinica, 2025, 41(9): 100111-0. doi: 10.1016/j.actphy.2025.100111

Metrics
  • PDF Downloads(0)
  • Abstract views(625)
  • HTML views(30)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return