Citation: Jia Lu, Huihu Wang, Yifan Dong, Fanqiang Wang, Shijie Dong. Plasmonic AgX nanoparticles-modified ZnO nanorod arrays and their visible-light-driven photocatalytic activity[J]. Chinese Journal of Catalysis, ;2014, 35(7): 1113-1125. doi: 10.1016/S1872-2067(14)60055-3 shu

Plasmonic AgX nanoparticles-modified ZnO nanorod arrays and their visible-light-driven photocatalytic activity

  • Corresponding author: Huihu Wang, 
  • Received Date: 28 December 2013
    Available Online: 10 February 2014

    Fund Project:

  • AgX (X=I, Br) nanoparticles-surface modified ZnO nanorod arrays (AgX/ZnO) were prepared using an impregnation method. The influence of impregnating solution concentration, immersion time, and UV light illumination pretreatment on the visible light-driven photocatalytic activity of AgX/ZnO was evaluated. The morphology, phase composition, band gap, and surface characteristics of the AgX/ZnO nanorod arrays were assessed by field-emission scanning electron microscopy, X-ray diffraction, diffuse reflectance UV-Vis absorption spectroscopy, and X-ray photoelectron spectroscopy. The AgBr nanoparticles were homogeneously distributed on the top and side surfaces of the ZnO nanorods, and connected to form a porous network structure. Following UV light illumination pretreatment, Ag nanoparticles were formed on the surface of the AgBr nanoparticles producing a Ag/AgBr/ZnO nanostructure. Methyl orange photodegradation study showed that the photocatalytic activity of AgBr/ZnO was higher than that of AgI/ZnO, synthesized under similar conditions, and was highly related to the impregnating solution concentration and immersion time. Owing to the high surface area of the ZnO nanorod arrays, the visible light sensitivity of AgBr, and surface plasmon resonance of Ag/AgBr, Ag/AgBr/ZnO exhibited the highest visible light-driven photocatalytic activity.
  • 加载中
    1. [1]

      [1] Lin H L, Cao J, Luo B D, Xu B Y, Chen S F. Catal Commun, 2012, 21: 91

    2. [2]

      [2] Whang T J, Hsieh M T, Chen H H. Appl Surf Sci, 2012, 258: 2796

    3. [3]

      [3] Han J, Shi L Y, Cheng R M, Chen Y W, Dong P F, Shao Q W. Chin J Inorg Chem (韩婧, 施利毅, 成荣明, 陈奕卫, 董鹏飞, 邵启伟. 无机化学学报), 2008, 24: 950

    4. [4]

      [4] Fu T H, Gao Q Q, Liu F, Dai H J, Kou X M. Chin J Catal (傅天华, 高倩倩, 刘斐, 代华均, 寇兴明. 催化学报), 2010, 31: 797

    5. [5]

      [5] Yu C L, Yang K, Shu Q, Yu J C, Cao F F, Li X. Chin J Catal (余长林, 杨凯, 舒庆, YU Jimmy C, 操芳芳, 李鑫. 催化学报), 2011, 32: 555

    6. [6]

      [6] Liu E Q, Guo X L, Qin L, Shen G D, Wang X D. Chin J Catal (刘二强, 郭晓玲, 秦雷, 申国栋, 王向东. 催化学报), 2012, 33: 1665

    7. [7]

      [7] Hwang D K, Oh M S, Lim J H, Park S J. J Phy D, 2007, 40: R387

    8. [8]

      [8] Ma L G, Ai X Q, Huang X L, Ma S Y. Superlattice Microstructures, 2011, 50: 703

    9. [9]

      [9] Li T T, Luo S L, Yang L X. J Solid State Chem, 2013, 206: 308

    10. [10]

      [10] Nie L H, Huang Z Q, Xu H T, Zhang W X, Yang B R, Fang L, Li S H. Chin J Catal (聂龙辉, 黄征青, 徐洪涛, 张旺喜, 杨柏蕊, 方磊, 李帅华. 催化学报), 2012, 33: 1209

    11. [11]

      [11] Wang D S, Duan Y D, Luo Q Z, Li X Y, Bao L L. Desalination, 2011, 270: 174

    12. [12]

      [12] Dong R F, Tian B Z, Zhang J L, Wang T T, Tao Q S, Bao S Y, Yang F, Zeng C Y. Catal Commun, 2013, 38: 16

    13. [13]

      [13] Wang X P, Lim T T. Water Res, 2013, 47: 4148

    14. [14]

      [14] Vignesh K, Suganthi A, Rajarajan M, Sara S A. Powder Technol, 2012, 224: 331

    15. [15]

      [15] Wang W X, Jing L Q, Qu Y C, Luan Y B, Fu H G, Xiao Y C. J Hazard Mater, 2012, 243: 169

    16. [16]

      [16] Yan T J, Zhang H W, Luo Q, Ma Y Y, Lin H X, You J M. Chem Eng J, 2013, 232: 564

    17. [17]

      [17] Shi L, Liang L, Ma J, Sun J M. Superlattice Microstructures, 2013, 62: 128

    18. [18]

      [18] Cui W Q, Wang H, Liang Y H, Han B X, Liu L, Hu J S. Chem Eng J, 2013, 230: 10

    19. [19]

      [19] Guo J F, Ma B W, Yin A Y, Fan K N, Dai W L. J Hazard Mater, 2012, 211-212: 77

    20. [20]

      [20] Hassan J J, Mahdi M A, Chin C W, Abu-Hassan H, Hassan Z. Sensor Actuat B, 2013, 176: 360

    21. [21]

      [21] Zhu Q, Xie C S, Li H Y, Yang Q C. J Alloy Compd, 2014, 585: 267

    22. [22]

      [22] Meng X H, Shao X, Li H Y, Yin J, Wang J, Liu F Z, Liu X H, Wang M, Zhong H L. Mater Lett, 2013, 105: 162

    23. [23]

      [23] Cui W Q, Wang H, Liang Y H, Liu Li, Han B X. Catal Commun, 2013, 36: 71

    24. [24]

      [24] Cao J, Zhao Y J, Lin H L, Xu B Y, Chen S F. J Solid State Chem, 2013, 206: 38

    25. [25]

      [25] Zeng C Y, Guo M, Tian B Z, Zhang J L. Chem Phys Lett, 2013, 575: 81

    26. [26]

      [26] Hu C, Lan Y Q, Qu J H, Hu X X, Wang A M. J Phys Chem B, 2006, 110: 4066

    27. [27]

      [27] Cozzoli P D, Comparelli R, Fanizza E, Curri M L, Agostiano A, Laub D. J Am Chem Soc, 2004, 126: 3868

  • 加载中
    1. [1]

      Zijian Jiang Yuang Liu Yijian Zong Yong Fan Wanchun Zhu Yupeng Guo . Preparation of Nano Zinc Oxide by Microemulsion Method and Study on Its Photocatalytic Activity. University Chemistry, 2024, 39(5): 266-273. doi: 10.3866/PKU.DXHX202311101

    2. [2]

      Bo YANGGongxuan LÜJiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 736-750. doi: 10.11862/CJIC.20230346

    3. [3]

      Zhen Yao Bing Lin Youping Tian Tao Li Wenhui Zhang Xiongwei Liu Wude Yang . Visible-Light-Mediated One-Pot Synthesis of Secondary Amines and Mechanistic Exploration. University Chemistry, 2024, 39(5): 201-208. doi: 10.3866/PKU.DXHX202311033

    4. [4]

      Xinzhe HUANGLihui XUYue YANGLiming WANGZhangyong LIUZhongjian WANG . Preparation and visible light responsive photocatalytic properties of BiSbO4/BiOBr. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 284-292. doi: 10.11862/CJIC.20240212

    5. [5]

      Yurong Tang Yunren Shi Yi Xu Bo Qin Yanqin Xu Yunfei Cai . Innovative Experiment and Course Transformation Practice of Visible-Light-Mediated Photocatalytic Synthesis of Isoquinolinone. University Chemistry, 2024, 39(5): 296-306. doi: 10.3866/PKU.DXHX202311087

    6. [6]

      Qin Li Huihui Zhang Huajun Gu Yuanyuan Cui Ruihua Gao Wei-Lin DaiIn situ Growth of Cd0.5Zn0.5S Nanorods on Ti3C2 MXene Nanosheet for Efficient Visible-Light-Driven Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2025, 41(4): 100031-. doi: 10.3866/PKU.WHXB202402016

    7. [7]

      Ping ZHANGChenchen ZHAOXiaoyun CUIBing XIEYihan LIUHaiyu LINJiale ZHANGYu'nan CHEN . Preparation and adsorption-photocatalytic performance of ZnAl@layered double oxides. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1965-1974. doi: 10.11862/CJIC.20240014

    8. [8]

      Bing LIUHuang ZHANGHongliang HANChangwen HUYinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398

    9. [9]

      Dan Liu . 可见光-有机小分子协同催化的不对称自由基反应研究进展. University Chemistry, 2025, 40(6): 118-128. doi: 10.12461/PKU.DXHX202408101

    10. [10]

      Jie Li Huida Qian Deyang Pan Wenjing Wang Daliang Zhu Zhongxue Fang . Efficient Synthesis of Anethaldehyde Induced by Visible Light. University Chemistry, 2024, 39(4): 343-350. doi: 10.3866/PKU.DXHX202310076

    11. [11]

      Yu Wang Shoulei Zhang Tianming Lv Yan Su Xianyu Liu Fuping Tian Changgong Meng . Introduce a Comprehensive Inorganic Synthesis Experiment: Synthesis of Nano Zinc Oxide via Microemulsion Using Waste Soybean Oil. University Chemistry, 2024, 39(7): 316-321. doi: 10.3866/PKU.DXHX202311035

    12. [12]

      Xiaoning TANGJunnan LIUXingfu YANGJie LEIQiuyang LUOShu XIAAn XUE . Effect of sodium alginate-sodium carboxymethylcellulose gel layer on the stability of Zn anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1452-1460. doi: 10.11862/CJIC.20240191

    13. [13]

      Xueqi Yang Juntao Zhao Jiawei Ye Desen Zhou Tingmin Di Jun Zhang . 调节NNU-55(Fe)的d带中心以增强CO2吸附和光催化活性. Acta Physico-Chimica Sinica, 2025, 41(7): 100074-. doi: 10.1016/j.actphy.2025.100074

    14. [14]

      Hui Shi Shuangyan Huan Yuzhi Wang . Ideological and Political Design of Potassium Permanganate Oxidation-Reduction Titration Experiment. University Chemistry, 2024, 39(2): 175-180. doi: 10.3866/PKU.DXHX202308042

    15. [15]

      Yichang Liu Li An Dan Qu Zaicheng Sun . “双碳”背景下的综合设计实验——以PbCrO4催化甲基蓝的光降解速率常数测定为例. University Chemistry, 2025, 40(6): 222-229. doi: 10.12461/PKU.DXHX202407105

    16. [16]

      Minna Ma Yujin Ouyang Yuan Wu Mingwei Yuan Lijuan Yang . Green Synthesis of Medical Chemiluminescence Reagents by Photocatalytic Oxidation. University Chemistry, 2024, 39(5): 134-143. doi: 10.3866/PKU.DXHX202310093

    17. [17]

      Yihui Song Shangshang Qin Kai Wu Chengyun Jin Bin Yu . 生物化学在高水平创新型药学人才培养中的交叉融合应用——以去甲基化酶LSD1抑制剂的活性评价为例. University Chemistry, 2025, 40(6): 341-352. doi: 10.12461/PKU.DXHX202406018

    18. [18]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    19. [19]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    20. [20]

      Liuyun Chen Wenju Wang Tairong Lu Xuan Luo Xinling Xie Kelin Huang Shanli Qin Tongming Su Zuzeng Qin Hongbing Ji . Soft template-induced deep pore structure of Cu/Al2O3 for promoting plasma-catalyzed CO2 hydrogenation to DME. Acta Physico-Chimica Sinica, 2025, 41(6): 100054-. doi: 10.1016/j.actphy.2025.100054

Metrics
  • PDF Downloads(0)
  • Abstract views(408)
  • HTML views(48)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return