Citation: Donglei Yang, Hongmei Yu, Guangfu Li, Wei Song, Yanxi Liu, Zhigang Shao. Effect of gas diffusion electrode parameters on anion exchange membrane fuel cell performance[J]. Chinese Journal of Catalysis, ;2014, 35(7): 1091-1097. doi: 10.1016/S1872-2067(14)60050-4 shu

Effect of gas diffusion electrode parameters on anion exchange membrane fuel cell performance

  • Corresponding author: Hongmei Yu, 
  • Received Date: 13 December 2013
    Available Online: 23 January 2014

    Fund Project:

  • Focused on the optimization of the gas diffusion electrode (GDE) in an alkaline anion exchange membrane fuel cell (AAEMFC), PTFE content and catalyst loading in the catalyst layer (CL) were found to have a substantial effect on the cell performance and electrochemical kinetics. The i-V curves, open circuit voltage, cell resistance, in-situ electrochemical impedance spectroscopy and kinetics analysis have been used to evaluate the electrochemical properties of the fabricated GDEs. The results reveal that the optimum PTFE content in the CL of AAEMFC is 20%. Pt loading ranged from 0.2-1.0 mg/cm2 was also investigated as a vital parameter for three-phase boundary, CL conductivity and catalyst utilization. Ultimately, the highest peak power density of 213 mW/cm2 was achieved at 50℃ from the prepared GDE with Pt loading of 1.0 mg/cm2 on Pt/C and 20% PTFE in CL of AAEMFC. Considering the Pt-based catalyst effective utilization and cost, however, the platinum requirement can be diminished to close to 0.5 mg/cm2 in CLwithout significant performance loss.
  • 加载中
    1. [1]

      [1] Wang Y J, Qiao J L, Baker R, Zhang J J. Chem Soc Rev, 2013, 42: 5768

    2. [2]

      [2] Varcoe J R, Slade R C T. Fuel Cells, 2005, 5: 187

    3. [3]

      [3] Matsumoto K, Fujigaya T, Yanagi H, Nakashima N. Adv Funct Mater, 2011, 21: 1089

    4. [4]

      [4] Merle G, Wessling M, Nijmeijer K. J Membr Sci, 2011, 377: 1

    5. [5]

      [5] Bidault F, Brett D J L, Middleton P H, Brandon N P. J Power Sources, 2009, 187: 39

    6. [6]

      [6] Pan J, Chen C, Zhuang L, Lu J T. Acc Chem Res, 2012, 45:473

    7. [7]

      [7] Tamain C, Poynton S D, Slade R C T, Carroll B, Varcoe J R. J Phys Chem C, 2007, 111: 18423

    8. [8]

      [8] Arges C G, Parrondo J, Johnson G, Nadhan A, Ramani V. J Mater Chem, 2012, 22: 3733

    9. [9]

      [9] Poynton S D, Zeng R, Kizewski J, Ong A L, Varcoe J R. ECS Transactions, 2012, 50: 2067

    10. [10]

      [10] Deavin O I, Murphy S, Ong A L, Poynton S D, Zeng R, Herman H, Varcoe J R. Energy Environ Sci, 2012, 5: 8584

    11. [11]

      [11] Liu L L, Zhang J, Qiao J L. Chem Res Chin Univ (刘玲玲, 张璟, 乔锦丽. 高等学校化学学报), 2012, 8: 1842

    12. [12]

      [12] Xu T W, Wu Y H, Luo J Y. Membr Sci Technol (徐铜文, 吴永会, 罗靖艺. 膜科学与技术), 2011, 31: 192

    13. [13]

      [13] Zhu R J, Zhang X R, Wang T, Wang D. Chin J Power Sources (朱荣杰, 张新荣, 王涛, 王东. 电源技术), 2013, 37: 575

    14. [14]

      [14] Kim J-H, Yonezawa S, Takashima M. Int J Hydrogen Energy, 2010, 35: 8707

    15. [15]

      [15] Bunazawa H, Yamazaki Y. J Power Sources, 2008, 182: 48

    16. [16]

      [16] Kim H, Zhou J F, Ünlü M, Anestis-Richard I, Joseph K, Kohl P A. Electrochim Acta, 2011, 56: 3085

    17. [17]

      [17] Hayashi K, Furuya N. J Electrochem Soc, 2004, 151: A354

    18. [18]

      [18] Huang N K, Wang S Z, Li L X. Chin J Power Sources (黄乃科, 王曙中, 李灵忻. 电源技术), 2003, 27: 329

    19. [19]

      [19] Marini S, Salvi P, Nelli P, Pesenti R, Villa M, Kiros Y. Int J Hydrogen Energy, 2013, 38: 11496

    20. [20]

      [20] Millington B, Du S F, Pollet B G. J Power Sources, 2011, 196: 9013

    21. [21]

      [21] Kim Y B, Holme T P, Guer T M, Prinz F B. Adv Funct Mater, 2011, 21: 4684

    22. [22]

      [22] Kubo D, Tadanaga K, Hayashi A, Tatsumisago M. J Power Sources, 2013, 222: 493

    23. [23]

      [23] Ünlü M, Zhou J F, Anestis-Richard I, Kim H, Kohl P A. Electrochim Acta, 2011, 56: 4439

    24. [24]

      [24] Lu S F, Pan J, Huang A B, Zhuang L, Lu J T. Proc Natl Acad Sci (USA), 2008, 105: 20611

    25. [25]

      [25] Yan Z Y, Li B, Yang D J, Ma J X. Chin J Catal (严泽宇, 李冰, 杨代军, 马建新. 催化学报), 2013, 34: 1471

    26. [26]

      [26] Zhang H Y, Cao C H, Zhao J, Lin R, Ma J X. Chin J Catal (张海艳, 曹春晖, 赵健, 林瑞, 马建新. 催化学报), 2012, 33: 222

    27. [27]

      [27] Fukuta K. Electrolyte Materials for AMFCs and AMFCs Performance. Presented at the 2011 AMFC Workshop, 2011

    28. [28]

      [28] Varcoe J R, Slade R C T, Wright G L, Chen Y L. J Phys Chem B, 2006, 110: 21041

    29. [29]

      [29] Mamlouk M, Scott K, Horsfall J A, Williams C. Int J Hydrogen Energy, 2011, 36: 7191

    30. [30]

      [30] Kim J, Lee S M, Srinivasan S, Chamberlin C E. J Electrochem Soc, 1995, 142: 2670

    31. [31]

      [31] Squadrito G, Maggio G, Passalacqua E, Lufrano F, Patti A. J Appl Electrochem, 1999, 29: 1449

    32. [32]

      [32] Carmo M, Doubek G, Sekol R C, Linardi M, Taylor A D. J Power Sources, 2013, 230: 169

  • 加载中
    1. [1]

      Jiandong LiuXin LiDaxiong WuHuaping WangJunda HuangJianmin Ma . Anion-Acceptor Electrolyte Additive Strategy for Optimizing Electrolyte Solvation Characteristics and Electrode Electrolyte Interphases for Li||NCM811 Battery. Acta Physico-Chimica Sinica, 2024, 40(6): 2306039-0. doi: 10.3866/PKU.WHXB202306039

    2. [2]

      Aoyu HuangJun XuYu HuangGui ChuMao WangLili WangYongqi SunZhen JiangXiaobo Zhu . Tailoring Electrode-Electrolyte Interfaces via a Simple Slurry Additive for Stable High-Voltage Lithium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 2408007-0. doi: 10.3866/PKU.WHXB202408007

    3. [3]

      Xiaomei Ning Liang Zhan Xiaosong Zhou Jin Luo Xunfu Zhou Cuifen Luo . Preparation and Electro-Oxidation Performance of PtBi Supported on Carbon Cloth: A Recommended Comprehensive Chemical Experiment. University Chemistry, 2024, 39(11): 217-224. doi: 10.3866/PKU.DXHX202401085

    4. [4]

      Dan Li Hui Xin Xiaofeng Yi . Comprehensive Experimental Design on Ni-based Catalyst for Biofuel Production. University Chemistry, 2024, 39(8): 204-211. doi: 10.3866/PKU.DXHX202312046

    5. [5]

      Wang WangYucheng LiuShengli Chen . Use of NiFe Layered Double Hydroxide as Electrocatalyst in Oxygen Evolution Reaction: Catalytic Mechanisms, Electrode Design, and Durability. Acta Physico-Chimica Sinica, 2024, 40(2): 2303059-0. doi: 10.3866/PKU.WHXB202303059

    6. [6]

      Xichen YAOShuxian WANGYun WANGCheng WANGChuang ZHANG . Oxygen reduction performance of self?supported Fe/N/C three-dimensional aerogel catalyst layers. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1387-1396. doi: 10.11862/CJIC.20240384

    7. [7]

      Xiaoyan Wang Chao Wang Dongmei Dai Yanling Geng Hongtao Gao . Design of Ideological and Political Education for the Experiment on Calcium Content Determination in Calcium Supplements. University Chemistry, 2024, 39(2): 162-167. doi: 10.3866/PKU.DXHX202307074

    8. [8]

      Lina GuoRuizhe LiChuang SunXiaoli LuoYiqiu ShiHong YuanShuxin OuyangTierui Zhang . Effect of Interlayer Anions in Layered Double Hydroxides on the Photothermocatalytic CO2 Methanation of Derived Ni-Al2O3 Catalysts. Acta Physico-Chimica Sinica, 2025, 41(1): 100002-0. doi: 10.3866/PKU.WHXB202309002

    9. [9]

      Yajin LiHuimin LiuLan MaJiaxiong LiuDehua He . Photothermal Synthesis of Glycerol Carbonate via Glycerol Carbonylation with CO2 over Au/Co3O4-ZnO Catalyst. Acta Physico-Chimica Sinica, 2024, 40(9): 2308005-0. doi: 10.3866/PKU.WHXB202308005

    10. [10]

      Tianqi BaiKun HuangFachen LiuRuochen ShiWencai RenSongfeng PeiPeng GaoZhongfan Liu . Nanoscale Mechanism of Microstructure-Dependent Thermal Diffusivity in Thick Graphene Sheets. Acta Physico-Chimica Sinica, 2025, 41(3): 2404024-0. doi: 10.3866/PKU.WHXB202404024

    11. [11]

      Bing LIUHuang ZHANGHongliang HANChangwen HUYinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398

    12. [12]

      Jianqiao ZHANGYang LIUYan HEYaling ZHOUFan YANGShihui CHENGBin XIAZhong WANGShijian CHEN . Ni-doped WP2 nanowire self-standingelectrode: Preparation and alkaline electrocatalytic hydrogen evolution property. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1610-1616. doi: 10.11862/CJIC.20240444

    13. [13]

      Kuaibing Wang Honglin Zhang Wenjie Lu Weihua Zhang . Experimental Design and Practice for Recycling and Nickel Content Detection from Waste Nickel-Metal Hydride Batteries. University Chemistry, 2024, 39(11): 335-341. doi: 10.12461/PKU.DXHX202403084

    14. [14]

      Yixuan WangCanhui ZhangXingkun WangJiarui DuanKecheng TongShuixing DaiLei ChuMinghua Huang . Engineering Carbon-Chainmail-Shell Coated Co9Se8 Nanoparticles as Efficient and Durable Catalysts in Seawater-Based Zn-Air Batteries. Acta Physico-Chimica Sinica, 2024, 40(6): 2305004-0. doi: 10.3866/PKU.WHXB202305004

    15. [15]

      Fangxuan LiuZiyan LiuGuowei ZhouTingting GaoWenyu LiuBin Sun . 中空结构光催化剂. Acta Physico-Chimica Sinica, 2025, 41(7): 100071-0. doi: 10.1016/j.actphy.2025.100071

    16. [16]

      Fengqiao Bi Jun Wang Dongmei Yang . Specialized Experimental Design for Chemistry Majors in the Context of “Dual Carbon”: Taking the Assembly and Performance Evaluation of Zinc-Air Fuel Batteries as an Example. University Chemistry, 2024, 39(4): 198-205. doi: 10.3866/PKU.DXHX202311069

    17. [17]

      Qi WuChanghua WangYingying LiXintong Zhang . Enhanced photocatalytic synthesis of H2O2 by triplet electron transfer at g-C3N4@BN van der Waals heterojunction interface. Acta Physico-Chimica Sinica, 2025, 41(9): 100107-0. doi: 10.1016/j.actphy.2025.100107

    18. [18]

      Dong XiangKunzhen LiKanghua MiaoRan LongYujie XiongXiongwu Kang . Amine-Functionalized Copper Catalysts: Hydrogen Bonding Mediated Electrochemical CO2 Reduction to C2 Products and Superior Rechargeable Zn-CO2 Battery Performance. Acta Physico-Chimica Sinica, 2024, 40(8): 2308027-0. doi: 10.3866/PKU.WHXB202308027

    19. [19]

      Qinjin DAIShan FANPengyang FANXiaoying ZHENGWei DONGMengxue WANGYong ZHANG . Performance of oxygen vacancy-rich V-doped MnO2 for high-performance aqueous zinc ion battery. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 453-460. doi: 10.11862/CJIC.20240326

    20. [20]

      Qi LiPingan LiZetong LiuJiahui ZhangHao ZhangWeilai YuXianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-0. doi: 10.3866/PKU.WHXB202311030

Metrics
  • PDF Downloads(0)
  • Abstract views(686)
  • HTML views(60)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return