Citation: Hongquan Jiang, Qiaofeng Wang, Shiyang Li, Jingshen Li, Qingyuan Wang. Pr, N, and P tri-doped anatase TiO2 nanosheets with enhanced photocatalytic activity under sunlight[J]. Chinese Journal of Catalysis, ;2014, 35(7): 1068-1077. doi: 10.1016/S1872-2067(14)60047-4 shu

Pr, N, and P tri-doped anatase TiO2 nanosheets with enhanced photocatalytic activity under sunlight

  • Corresponding author: Hongquan Jiang, 
  • Received Date: 16 December 2013
    Available Online: 22 January 2014

    Fund Project:

  • Pr, N, and P tri-doped anatase TiO2 nanosheets (PrNPTO) were synthesized by a combined sol-gel solvothermal method and characterized by X-ray diffraction, transmission electron microscopy, N2 adsorption-desorption, X-ray photoelectron spectroscopy, UV-vis absorbance spectroscopy, and photoluminescence spectroscopy. When the Pr-doping concentration was 1.75 wt% and calcination temperature employed was 550℃, the resulting PrNPTO showed the highest photoactivity towards the degradation of methylene blue under visible and UV light irradiation. PrNPTO also displayed superior photoactivity towards the degradation of 4-chlorophenol under sunlight (kapp=3.90×10-2 min-1) over the non-doped, single-doped, and co-doped samples, and P25 TiO2 (kapp =1.17×10-2 min-1). The high photoactivity of PrNPTO was attributed to the increased UV and visible light absorption properties, reduced recombination of photogenerated carriers, increased surface hydroxyl content, and improved surface textural properties. PrNPTO was highly efficient and stable under simulated sunlight irradiation, which are essential attributes for practical application in environment-related remediation schemes.
  • 加载中
    1. [1]

      [1] Di Paola A, García-López E, Marcì G, Palmisano L. J Hazard Mater, 2012, 211-212: 3

    2. [2]

      [2] Pelaez M, Nolan N T, Pillai S C, Seery M K, Falaras P, Kontos A G, Dunlop P S M, Hamilton J W J, Byrne J A, O'Shea K, Entezari M H, Dionysiou D D. Appl Catal B, 2012, 125: 331

    3. [3]

      [3] Chen L H, Li X Y, Deng Z, Hu Z Y, Rooke J C, Krief A, Yang X Y, Su B L. Catal Today, 2013, 212: 89

    4. [4]

      [4] Olabarrieta J, Zorita S, Peńa I, Rioja N, Monzón O, Benguria P, Scifo L. Appl Catal B, 2012, 123-124: 182

    5. [5]

      [5] Dolat D, Quici N, Kusiak-Nejman E, Morawski A W, Li Puma G. Appl Catal B, 2012, 115-116: 81

    6. [6]

      [6] Yu X L, Wang Y, Meng X J, Yang J J. Chin J Catal (于新娈, 王岩, 孟祥江, 杨建军. 催化学报), 2013, 34: 1418

    7. [7]

      [7] Yu F H, Wang J H, Zhao K F, Yin J, Jin C Z, Liu X. Chin J Catal (于福海, 王军虎, 赵昆峰, 尹杰, 金长子, 刘忻. 催化学报), 2013, 34: 1216

    8. [8]

      [8] Asahi R, Morikawa T, Ohwaki T, Aoki K, Taga Y. Science, 2001, 293: 269

    9. [9]

      [9] Dozzi M V, Selli E. J Photochem Photobiol C, 2013, 14: 13

    10. [10]

      [10] Xu L, Tang C Q, Qian J, Huang Z B. Appl Surf Sci, 2010, 256: 2668

    11. [11]

      [11] Lin L, Lin W, Xie J L, Zhu Y X, Zhao B Y, Xie Y C. Appl Catal B, 2007, 75: 52

    12. [12]

      [12] Lü Y Y, Yu L S, Huang H Y, Liu H L, Feng Y Y. J Alloys Compd, 2009, 488: 314

    13. [13]

      [13] Zheng R Y, Guo Y, Jin C, Xie J L, Zhu Y X, Xie Y C. J Mol Catal A, 2010, 319: 46

    14. [14]

      [14] Elghnigi K, Hentati O, Mlaik N, Mahfoudh A, Ksibi M. J Environ Sci, 2012, 24: 479

    15. [15]

      [15] Yu C L, Yu J C, Zhou W Q, Yang K. Catal Lett, 2010, 140: 172

    16. [16]

      [16] Chen W G, Yuan P F, Zhang S, Sun Q, Liang E J, Jia Y. Phys B, 2012, 407: 1038

    17. [17]

      [17] Chiou C H, Juang R S. J Hazard Mater, 2007, 149: 1

    18. [18]

      [18] Yang J, Dai J, Li J T. Appl Surf Sci, 2011, 257: 8965

    19. [19]

      [19] Wu J, Liu Q J, Gao P, Zhu Z Q. Mater Res Bull, 2011, 46: 1997

    20. [20]

      [20] Lin L, Zheng R Y, Xie J L, Zhu Y X, Xie Y C. Appl Catal B, 2007, 76: 196

    21. [21]

      [21] Jiang H Q, Wang Q F, Li J S, Wang Q Y, Li Z Y. Acta Chim Sin (姜洪泉, 王巧凤, 李井申, 王庆元, 李振宇. 化学学报), 2012, 70: 2173

    22. [22]

      [22] Umare S S, Charanpahari A, Sasikala R. Mater Chem Phys, 2013, 140: 529

    23. [23]

      [23] Jiang H Q, Yan P P, Wang Q F, Zang S Y, Li J S, Wang Q Y. Chem Eng J, 2013, 215-216: 348

    24. [24]

      [24] Jiang H Q, Wang Q Y, Zang S Y, Li J S, Wang Q F. J Hazard Mater, 2013, 261: 44

    25. [25]

      [25] Yan P P, Jiang H Q, Zang S Y, Li J S, Wang Q Y, Wang Q F. Mater Chem Phys, 2013, 139: 1014

    26. [26]

      [26] Xia K S, Ferguson D, Djaoued Y, Robichaud J, Tchoukanova N, Brüning R, McCalla E. Appl Catal A, 2010, 387: 231

    27. [27]

      [27] Yao N, Cao S L, Yeung K L. Microporous Mesoporous Mater, 2009, 117: 570

    28. [28]

      [28] He F, Ma F, Li T, Li G X. Chin J Catal (何霏, 马芳, 李涛, 李光兴. 催化学报), 2013, 34: 2263

    29. [29]

      [29] Jaiswal R, Patel N, Kothari D C, Miotello A. Appl Catal B, 2012, 126: 47

    30. [30]

      [30] Cheng X W, Yu X J, Li B Y, Yan L, Xing Z P, Li J J. Mater Sci Eng B, 2013, 178: 425

    31. [31]

      [31] Lee S, Cho I S, Lee D K, Kim D W, Noh T H, Kwak C H, Park S, Hong K S, Lee J K, Jung H S. J Photochem Photobiol A, 2010, 213: 129

    32. [32]

      [32] Ma Y F, Zhang J L, Tian B Z, Chen F, Wang L Z. J Hazard Mater, 2010, 182: 386

    33. [33]

      [33] Shen Y F, Xiong T Y, Du H, Jin H Z, Shang J K, Yang K. J Sol-Gel Sci Technol, 2009, 50: 98

    34. [34]

      [34] Hu S Z, Li F Y, Fan Z P. J Hazard Mater, 2011, 196: 248

    35. [35]

      [35] Di Valentin C, Finazzi E, Pacchioni G, Selloni A, Livraghi S, Paganini M C, Giamello E. Chem Phys, 2007, 339: 44

    36. [36]

      [36] Brahimi R, Bessekhouad Y, Trari M. Phys B, 2012, 407: 3897

    37. [37]

      [37] Amlouk A, El Mir L, Kraiem S, Saadoun M, Alaya S, Pierre A C. Mater Sci Eng B, 2008, 146: 74

    38. [38]

      [38] Jing L Q, Xin B F, Yuan F L, Xue L P, Wang B Q, Fu H G. J Phys Chem B, 2006, 110: 17860

    39. [39]

      [39] Sun S, Ding J J, Bao J, Gao C, Qi Z M, Yang X Y, He B, Li C X. Appl Surf Sci, 2012, 258: 5031

    40. [40]

      [40] Choi W K, Termin A, Haffman M R. J Phys Chom, 1994, 98: 3669

    41. [41]

      [41] Zhang Q H, Gao L, Guo J K. Appl Catal B, 2000, 26: 207

    42. [42]

      [42] Li H Q, Xu B L, Fan Y N. Chem Phys Lett, 2013, 558: 66

  • 加载中
    1. [1]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    2. [2]

      Yingqi BAIHua ZHAOHuipeng LIXinran RENJun LI . Perovskite LaCoO3/g-C3N4 heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 480-490. doi: 10.11862/CJIC.20240259

    3. [3]

      Yuanyin CuiJinfeng ZhangHailiang ChuLixian SunKai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-0. doi: 10.3866/PKU.WHXB202405016

    4. [4]

      Zijian Jiang Yuang Liu Yijian Zong Yong Fan Wanchun Zhu Yupeng Guo . Preparation of Nano Zinc Oxide by Microemulsion Method and Study on Its Photocatalytic Activity. University Chemistry, 2024, 39(5): 266-273. doi: 10.3866/PKU.DXHX202311101

    5. [5]

      Jingyu Cai Xiaoyu Miao Yulai Zhao Longqiang Xiao . Exploratory Teaching Experiment Design of FeOOH-RGO Aerogel for Photocatalytic Benzene to Phenol. University Chemistry, 2024, 39(4): 169-177. doi: 10.3866/PKU.DXHX202311028

    6. [6]

      Ke LiChuang LiuJingping LiGuohong WangKai Wang . Architecting Inorganic/Organic S-Scheme Heterojunction of Bi4Ti3O12 Coupling with g-C3N4 for Photocatalytic H2O2 Production from Pure Water. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-0. doi: 10.3866/PKU.WHXB202403009

    7. [7]

      Haitao WangLianglang YuJizhou JiangArramelJing Zou . S-Doping of the N-Sites of g-C3N4 to Enhance Photocatalytic H2 Evolution Activity. Acta Physico-Chimica Sinica, 2024, 40(5): 2305047-0. doi: 10.3866/PKU.WHXB202305047

    8. [8]

      Xuejiao WangSuiying DongKezhen QiVadim PopkovXianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-0. doi: 10.3866/PKU.WHXB202408005

    9. [9]

      Zhiquan ZhangBaker RhimiZheyang LiuMin ZhouGuowei DengWei WeiLiang MaoHuaming LiZhifeng Jiang . Insights into the Development of Copper-Based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-0. doi: 10.3866/PKU.WHXB202406029

    10. [10]

      Ronghui LI . Photocatalysis performance of nitrogen-doped CeO2 thin films via ion beam-assisted deposition. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1123-1130. doi: 10.11862/CJIC.20240440

    11. [11]

      Yadan LuoHao ZhengXin LiFengmin LiHua TangXilin She . Modulating reactive oxygen species in O, S co-doped C3N4 to enhance photocatalytic degradation of microplastics. Acta Physico-Chimica Sinica, 2025, 41(6): 100052-0. doi: 10.1016/j.actphy.2025.100052

    12. [12]

      Jingping LiSuding YanJiaxi WuQiang ChengKai Wang . Improving hydrogen peroxide photosynthesis over inorganic/organic S-scheme photocatalyst with LiFePO4. Acta Physico-Chimica Sinica, 2025, 41(9): 100104-0. doi: 10.1016/j.actphy.2025.100104

    13. [13]

      Tong WANGQinyue ZHONGQiong HUANGWeimin GUOXinmei LIU . Mn-doped carbon quantum dots/Fe-doped ZnO flower-like microspheres heterojunction: Construction and photocatalytic performance. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1589-1600. doi: 10.11862/CJIC.20250011

    14. [14]

      Qin HuLiuyun ChenXinling XieZuzeng QinHongbing JiTongming Su . Construction of Electron Bridge and Activation of MoS2 Inert Basal Planes by Ni Doping for Enhancing Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(11): 2406024-0. doi: 10.3866/PKU.WHXB202406024

    15. [15]

      Jiawei HuKai XiaAo YangZhihao ZhangWen XiaoChao LiuQinfang Zhang . Interfacial Engineering of Ultrathin 2D/2D NiPS3/C3N5 Heterojunctions for Boosting Photocatalytic H2 Evolution. Acta Physico-Chimica Sinica, 2024, 40(5): 2305043-0. doi: 10.3866/PKU.WHXB202305043

    16. [16]

      Shijie LiKe RongXiaoqin WangChuqi ShenFang YangQinghong Zhang . Design of Carbon Quantum Dots/CdS/Ta3N5 S-scheme Heterojunction Nanofibers for Efficient Photocatalytic Antibiotic Removal. Acta Physico-Chimica Sinica, 2024, 40(12): 2403005-0. doi: 10.3866/PKU.WHXB202403005

    17. [17]

      Guoqiang ChenZixuan ZhengWei ZhongGuohong WangXinhe Wu . Molten Intermediate Transportation-Oriented Synthesis of Amino-Rich g-C3N4 Nanosheets for Efficient Photocatalytic H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(11): 2406021-0. doi: 10.3866/PKU.WHXB202406021

    18. [18]

      Yuchen ZhouHuanmin LiuHongxing LiXinyu SongYonghua TangPeng Zhou . Designing thermodynamically stable noble metal single-atom photocatalysts for highly efficient non-oxidative conversion of ethanol into high-purity hydrogen and value-added acetaldehyde. Acta Physico-Chimica Sinica, 2025, 41(6): 100067-0. doi: 10.1016/j.actphy.2025.100067

    19. [19]

      Hui WangAbdelkader LabidiMenghan RenFeroz ShaikChuanyi Wang . Recent Progress of Microstructure-Regulated g-C3N4 in Photocatalytic NO Conversion: The Pivotal Roles of Adsorption/Activation Sites. Acta Physico-Chimica Sinica, 2025, 41(5): 100039-0. doi: 10.1016/j.actphy.2024.100039

    20. [20]

      Heng ChenLonghui NieKai XuYiqiong YangCaihong Fang . Remarkable Photocatalytic H2O2 Production Efficiency over Ultrathin g-C3N4 Nanosheet with Large Surface Area and Enhanced Crystallinity by Two-Step Calcination. Acta Physico-Chimica Sinica, 2024, 40(11): 2406019-0. doi: 10.3866/PKU.WHXB202406019

Metrics
  • PDF Downloads(0)
  • Abstract views(910)
  • HTML views(118)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return