Citation: Qunying Liang, Hong Su, Jing Yan, Chunkit Leung, Shuiliang Cao, Dingsheng Yuan. N-doped mesoporous carbon as a bifunctional material for oxygen reduction reaction and supercapacitors[J]. Chinese Journal of Catalysis, ;2014, 35(7): 1078-1083. doi: 10.1016/S1872-2067(14)60044-9 shu

N-doped mesoporous carbon as a bifunctional material for oxygen reduction reaction and supercapacitors

  • Corresponding author: Dingsheng Yuan, 
  • Received Date: 30 December 2013
    Available Online: 22 January 2014

    Fund Project:

  • A N-doped mesoporous carbon (NMC-1) has been synthesized at relatively low temperature using chitosan as a nitrogen and carbon source, tetraethoxysilane as a soft template, and nickel nitrate as a catalyst. NMC-1 has a porous structure and heteroatoms such as N and O atoms, indicating that NMC-1 can contribute to electrocatalysis, electric double-layer capacitance, and pseudocapacitance. Hence, NMC-1 was used as a bifunctional material which shows effective activity as an electrocatalyst for oxygen reduction reaction in alkaline solution, and a high specific capacitance as an ultracapacitor (252 F/g at 0.2 A/g). The results demonstrate that the presented NMC-1 has potential applications as a renewable and environmentally friendly material in fuel cells and supercapacitors.
  • 加载中
    1. [1]

      [1] Jacobson M Z, Colella W G, Golden D M. Science, 2005, 308: 1901

    2. [2]

      [2] Lefevre M, Proietti E, Jaouen F, Dodelet J P. Science, 2009, 324: 71

    3. [3]

      [3] Zhang J, Tang S H, Liao L Y, Yu W F. Chin J Catal (张洁, 唐水花, 廖龙渝, 郁卫飞. 催化学报), 2013, 34: 1051

    4. [4]

      [4] Peng H L, Mo Z Y, Liao S J, Liang H G, Yang L J, Luo F, Song H Y, Zhong Y L, Zhang B Q. Sci Rep, 2013, 3: 1765

    5. [5]

      [5] Wu Z S, Yang S B, Sun Y, Parvez K, Feng X L, Müllen K. J Am Chem Soc, 2012, 134: 9082

    6. [6]

      [6] Chen Z, Higgins D, Tao H S, Hsu R S, Chen Z W. J Phys Chem C, 2009, 113: 21008

    7. [7]

      [7] Lü R T, Cui T X, Jun M-S, Zhang Q, Cao A Y, Su D S, Zhang Z J, Yoon S-H, Miyawaki J, Mochida I, Kang F Y. Adv Funct Mater, 2011, 21: 999

    8. [8]

      [8] Qu L T, Liu Y, Baek J-B, Dai L M. ACS Nano, 2010, 4: 1321

    9. [9]

      [9] Xiong W, Du F, Liu Y, Perez A Jr, Supp M, Ramakrishnan T S, Dai L M, Jiang L. J Am Chem Soc, 2010, 132: 15839

    10. [10]

      [10] Yan J, Meng H, Xie F Y, Yuan X L, Yu W D, Lin W R, Ouyang W P, Yuan D S. J Power Sources, 2014, 245: 772

    11. [11]

      [11] Simon P, Gogotsi Y. Nature Mater, 2008, 7: 845

    12. [12]

      [12] Miller J R, Simon P. Science, 2008, 321: 651

    13. [13]

      [13] Yang X W, Cheng C, Wang Y F, Qiu L, Li D. Science, 2013, 341: 534

    14. [14]

      [14] Zhu Y W, Murali S, Stoller M D, Ganesh K J, Cai W W, Ferreira P J, Pirkle A, Wallace R M, Cychosz K A, Thommes M, Su D, Stach E A, Ruoff R S. Science, 2011, 332: 1537

    15. [15]

      [15] Su D S, Centi G. J Energy Chem, 2013, 22: 151

    16. [16]

      [16] Zhai Y P, Dou Y Q, Zhao D Y, Fulvio P F, Mayes R T, Dai S. Adv Mater, 2011, 23: 4828

    17. [17]

      [17] Frackowiak E, Beguin F. Carbon, 2002, 40: 1775

    18. [18]

      [18] Kokai F, Yamda Y, Sunouchi T, Koshio A. Appl Physics A, 2005, 81: 1595

    19. [19]

      [19] Krasheninnikov A V, Banhart F. Nature Mater, 2007, 6: 723

    20. [20]

      [20] Xu S Y, Li Y F, Zou H F, Qiu J S, Guo Z, Guo B C. Anal Chem, 2003, 75: 6191

    21. [21]

      [21] Kumar M N V R. React Funct Polym, 2000, 46: 1

    22. [22]

      [22] Rinaudo M. Progr Polym Sci, 2006, 31: 603

    23. [23]

      [23] Yuan D S, Zeng F L, Yan J, Yuan X L, Huang X J, Zou W J. RSC Adv, 2013, 3: 5570

  • 加载中
    1. [1]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    2. [2]

      Huayan LiuYifei ChenMengzhao YangJiajun Gu . Strategies for enhancing capacity and rate performance of two-dimensional material-based supercapacitors. Acta Physico-Chimica Sinica, 2025, 41(6): 100063-0. doi: 10.1016/j.actphy.2025.100063

    3. [3]

      Fangfang WANGJiaqi CHENWeiyin SUN . CuBi@Cu-MOF composite catalysts for electrocatalytic CO2 reduction to HCOOH. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 97-104. doi: 10.11862/CJIC.20240350

    4. [4]

      Jinyi Sun Lin Ma Yanjie Xi Jing Wang . Preparation and Electrocatalytic Nitrogen Reduction Performance Study of Vanadium Nitride@Nitrogen-Doped Carbon Composite Nanomaterials: A Recommended Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(4): 184-191. doi: 10.3866/PKU.DXHX202310094

    5. [5]

      Xichen YAOShuxian WANGYun WANGCheng WANGChuang ZHANG . Oxygen reduction performance of self?supported Fe/N/C three-dimensional aerogel catalyst layers. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1387-1396. doi: 10.11862/CJIC.20240384

    6. [6]

      Dong-Bing Cheng Junxin Duan Haiyu Gao . Experimental Teaching Design on Chitosan Extraction and Preparation of Antibacterial Gel. University Chemistry, 2024, 39(2): 330-339. doi: 10.3866/PKU.DXHX202308053

    7. [7]

      Zhaomei LIUWenshi ZHONGJiaxin LIGengshen HU . Preparation of nitrogen-doped porous carbons with ultra-high surface areas for high-performance supercapacitors. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 677-685. doi: 10.11862/CJIC.20230404

    8. [8]

      Jiajie Li Xiaocong Ma Jufang Zheng Qiang Wan Xiaoshun Zhou Yahao Wang . Recent Advances in In-Situ Raman Spectroscopy for Investigating Electrocatalytic Organic Reaction Mechanisms. University Chemistry, 2025, 40(4): 261-276. doi: 10.12461/PKU.DXHX202406117

    9. [9]

      Xueting CaoShuangshuang ChaMing Gong . Interfacial Electrical Double Layer in Electrocatalytic Reactions: Fundamentals, Characterizations and Applications. Acta Physico-Chimica Sinica, 2025, 41(5): 100041-0. doi: 10.1016/j.actphy.2024.100041

    10. [10]

      Xinyi ZhangKai RenYanning LiuZhenyi GuZhixiong HuangShuohang ZhengXiaotong WangJinzhi GuoIgor V. ZatovskyJunming CaoXinglong Wu . Progress on Entropy Production Engineering for Electrochemical Catalysis. Acta Physico-Chimica Sinica, 2024, 40(7): 2307057-0. doi: 10.3866/PKU.WHXB202307057

    11. [11]

      Qiqi LiSu ZhangYuting JiangLinna ZhuNannan GuoJing ZhangYutong LiTong WeiZhuangjun Fan . Preparation of High Density Activated Carbon by Mechanical Compression of Precursors for Compact Capacitive Energy Storage. Acta Physico-Chimica Sinica, 2025, 41(3): 2406009-0. doi: 10.3866/PKU.WHXB202406009

    12. [12]

      Yan KongWei WeiLekai XuChen Chen . Electrochemical Synthesis of Organonitrogen Compounds from N-integrated CO2 Reduction Reaction. Acta Physico-Chimica Sinica, 2024, 40(8): 2307049-0. doi: 10.3866/PKU.WHXB202307049

    13. [13]

      Xiting Zhou Zhipeng Han Xinlei Zhang Shixuan Zhu Cheng Che Liang Xu Zhenyu Sun Leiduan Hao Zhiyu Yang . Dual Modulation via Ag-Doped CuO Catalyst and Iodide-Containing Electrolyte for Enhanced Electrocatalytic CO2 Reduction to Multi-Carbon Products: A Comprehensive Chemistry Experiment. University Chemistry, 2025, 40(7): 336-344. doi: 10.12461/PKU.DXHX202412070

    14. [14]

      Xinlong XUChunxue JINGYuzhen CHEN . Bimetallic MOF-74 and derivatives: Fabrication and efficient electrocatalytic biomass conversion. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1545-1554. doi: 10.11862/CJIC.20250046

    15. [15]

      Yanhui XUEShaofei CHAOMan XUQiong WUFufa WUSufyan Javed Muhammad . Construction of high energy density hexagonal hole MXene aqueous supercapacitor by vacancy defect control strategy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1640-1652. doi: 10.11862/CJIC.20240183

    16. [16]

      Yixuan WangCanhui ZhangXingkun WangJiarui DuanKecheng TongShuixing DaiLei ChuMinghua Huang . Engineering Carbon-Chainmail-Shell Coated Co9Se8 Nanoparticles as Efficient and Durable Catalysts in Seawater-Based Zn-Air Batteries. Acta Physico-Chimica Sinica, 2024, 40(6): 2305004-0. doi: 10.3866/PKU.WHXB202305004

    17. [17]

      Xue DongXiaofu SunShuaiqiang JiaShitao HanDawei ZhouTing YaoMin WangMinghui FangHaihong WuBuxing Han . Electrochemical CO2 Reduction to C2+ Products with Ampere-Level Current on Carbon-Modified Copper Catalysts. Acta Physico-Chimica Sinica, 2025, 41(3): 2404012-0. doi: 10.3866/PKU.WHXB202404012

    18. [18]

      Jin CHANG . Supercapacitor performance and first-principles calculation study of Co-doping Ni(OH)2. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1697-1707. doi: 10.11862/CJIC.20240108

    19. [19]

      Hao XURuopeng LIPeixia YANGAnmin LIUJie BAI . Regulation mechanism of halogen axial coordination atoms on the oxygen reduction activity of Fe-N4 site: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 695-701. doi: 10.11862/CJIC.20240302

    20. [20]

      Xiaofeng ZhuBingbing XiaoJiaxin SuShuai WangQingran ZhangJun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-0. doi: 10.3866/PKU.WHXB202407005

Metrics
  • PDF Downloads(0)
  • Abstract views(470)
  • HTML views(41)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return