Citation: Fubao Zhang, Xiaopeng Yu, Fei Ma, Xiangui Yang, Jing Hu, Zhiyong Deng, Gongying Wang. Transesterification of dimethyl oxalate with phenol over a MoO3/SiO2 catalyst prepared by thermal spreading[J]. Chinese Journal of Catalysis, ;2014, 35(7): 1043-1053. doi: 10.1016/S1872-2067(14)60042-5 shu

Transesterification of dimethyl oxalate with phenol over a MoO3/SiO2 catalyst prepared by thermal spreading

  • Corresponding author: Zhiyong Deng,  Gongying Wang, 
  • Received Date: 7 December 2013
    Available Online: 20 January 2014

    Fund Project:

  • MoO3/SiO2 catalysts for the transesterification of dimethyl oxalate (DMO) with phenol were prepared by both the thermal spreading (TS) and incipient wetness impregnation methods. The results showed that the 10%MoO3/SiO2 catalyst prepared by TS (10%MoO3/SiO2-TS) exhibited higher catalytic performance compared with the 10%MoO3/SiO2 catalyst prepared by incipient wetness impregnation (10%MoO3/SiO2-C). The catalysts were characterized by X-ray diffraction, Raman spectroscopy, X-ray photoelectron spectroscopy, pyridine-IR spectroscopy, and NH3 temperature-programmed desorption. These analyses indicated that weak Lewis acid sites were formed on the catalyst surfaces and that the Mo species were present as monomeric MoO3 rather than as isolated molybdenum oxide or polymolybdate species on both catalysts, although the 10%MoO3/SiO2-TS exhibited better dispersion of MoO3 and a higher surface Mo content than the 10%MoO3/SiO2-C. Under the optimal transesterification reaction conditions (1.2 g 10%MoO3/SiO2-TS, T=180℃, n(DMO)/n(phenol)=2, t=4 h), the conversion of phenol was 70.9%, and the yields of methyl phenyl oxalate and diphenyl oxalate were 63.1% and 7.7%, respectively.
  • 加载中
    1. [1]

      [1] Xu K X. Handbook of Fine Organic Chemical Raw Materials and Intermediates. Beijing: Chem Ind Press (徐克勋. 精细有机化工原料及中间体手册. 北京: 化学工业出版社), 1998

    2. [2]

      [2] Mei F M, Li G X, Mo W L. Modern Chem Ind (梅付名, 李光兴, 莫婉玲. 现代化工), 1999, 19: 13

    3. [3]

      [3] Andraos J. Pure Appl Chem, 2012, 84: 827

    4. [4]

      [4] Gong J L, Ma X B, Wang S P. Appl Catal A, 2007, 316: 1

    5. [5]

      [5] Wang G Y, Liu S Y, Chen T, Yin X. Fine Chem (王公应, 刘绍英, 陈彤, 殷霞. 精细化工), 2013, 30: 420

    6. [6]

      [6] Kanega R, Hayashi T, Yamanaka I. ACS Catal, 2013, 3: 389

    7. [7]

      [7] Murayama T, Hayashi T, Kanega R, Yamanaka I. J Phys Chem C, 2012, 116: 10607

    8. [8]

      [8] Fan G Z, Wang Z G, Zou B, Wang M. Fuel Process Technol, 2011, 92: 1052

    9. [9]

      [9] Li B J, Tang R Z, Chen T, Wang G Y. Chin J Catal (李碧静, 唐荣芝, 陈彤, 王公应. 催化学报), 2012, 33: 601

    10. [10]

      [10] Cao P, Yang X G, Tang C M, Yang J, Yao J, Wang Y, Wang G Y. Chin J Catal (曹平, 杨先贵, 唐聪明, 杨建, 姚洁, 王越, 王公应. 催化学报), 2009, 30: 853

    11. [11]

      [11] Katsumasa H, Ryoji S, Kashiwagi K, Yoichi I, Takashi D, Nishihira K, Tanaka S, Hirofumi I. US Patent 5892089. 1998

    12. [12]

      [12] Nishihira K, Tanaka S, Nishida Y, Hirofumi I, Fujitsu S, Katsumasa H, Ryoji S, Kashiwagi K, Takashi D. US Patent 5811573. 1998

    13. [13]

      [13] Liu Y, Ma X B, Wang S P, Gong J L. Appl Catal B, 2007, 77: 125

    14. [14]

      [14] Ma X B, Guo H L, Wang S P, Sun Y L. Fuel Process Technol, 2003, 83: 275

    15. [15]

      [15] Ma X B, Gong J L, Wang S P, He F, Guo H L, Yang X, Xu G H. J Mol Catal A, 2005, 237: 1

    16. [16]

      [16] Shi Y, Wang S P, Ma X B. Chem Eng J, 2011, 166: 744

    17. [17]

      [17] Wang S P, Shi Y, Ma X B. Microporous Mesoporous Mater, 2012, 156: 22

    18. [18]

      [18] Liu Y, Zhao G M, Liu G, Wu S J, Chen G H, Zhang W X, Sun H Y, Jia M J. Catal Commun, 2008, 9: 2022

    19. [19]

      [19] Liu G, Liu Y, Yang G, Li S Y, Zu Y H, Zhang W X, Jia M J. J Phys Chem C, 2009, 113: 9345

    20. [20]

      [20] Ma X B, Wang S P, Gong J L, Yang X, Xu G H. J Mol Catal A, 2004, 222: 183

    21. [21]

      [21] Wang S P, Ma X B, Guo H L, Gong J L, Yang X, Xu G H. J Mol Catal A, 2004, 214: 273

    22. [22]

      [22] Ma X B, Gong J L, Wang S P, Gao N, Wang D L, Yang X, He F. Catal Commun, 2004, 5: 101

    23. [23]

      [23] Ma X B, Gong J L, Yang X, Wang S P. Appl Catal A, 2005, 280: 215

    24. [24]

      [24] Liu Y, Wang S P, Ma X B. Ind Eng Chem Res, 2007, 46: 1045

    25. [25]

      [25] Ma X B, Gong J L, Wang S P, He F, Yang X, Wang G, Xu G H. J Mol Catal A, 2004, 218: 253

    26. [26]

      [26] Gong J L, Ma X B, Wang S P, Liu M Y, Yang X, Xu G H. J Mol Catal A, 2004, 207: 215

    27. [27]

      [27] Gong J L, Ma X B, Yang X, Wang S P, Wen S D. React Kinet Catal Lett, 2005, 84: 79

    28. [28]

      [28] Gong J L, Ma X B, Yang X, Wang S P, Gao N, Wang D L. Catal Lett, 2005, 99: 187

    29. [29]

      [29] Kotbagi T, Nguyen D L, Lancelot C, Lamonier C, Thavornprasert K A, Zhu W L, Capron M, Jalowiecki-Duhamel L, Umbarkar S, Dongare M, Dumeignil F. ChemSusChem, 2012, 5: 1467

    30. [30]

      [30] Biradar A V, Umbarkar S B, Dongare M K. Appl Catal A, 2005, 285: 190

    31. [31]

      [31] Chen C X, Peng J S, Li B, Hu Z Q, Zhang H, Qiu F L. J Porous Mater, 2009, 16: 233

    32. [32]

      [32] Yuan X L, Zhang M, Chen X D, An N H, Liu G, Liu Y, Zhang W X, Yan W F, Jia M J. Appl Catal A, 2012, 439-440: 149

    33. [33]

      [33] Debecker D P, Stoyanova M, Rodemerck U, Leonard A, Su B L, Gaigneaux E M. Catal Today, 2011, 169: 60

    34. [34]

      [34] Debecker D P, Stoyanova M, Rodemerck U, Eloy P, Leonard A, Su B L, Gaigneaux E M. J Phys Chem C, 2010, 114: 18664

    35. [35]

      [35] Debecker D P, Stoyanova M, Rodemerck U, Gaigneaux E M. Stud Surf Sci Catal, 2010, 175: 581

    36. [36]

      [36] Braun S, Appel L G, Schmal M. Appl Surf Sci, 2002, 201: 227

    37. [37]

      [37] Wang C B, Cai Y P, Wachs I E. Langmuir, 1999, 15: 1223

    38. [38]

      [38] Balcar H, Mishra D, Marceau E, Carrier X, Žilková N, Bastl Z. Appl Catal A, 2009, 359: 129

    39. [39]

      [39] Mariana A R L, Cedeno C L. Ind Eng Chem Res, 2011, 50: 2641

    40. [40]

      [40] Reddy B M, Reddy E P, Srinivas S T. J Catal, 1992, 136: 50

    41. [41]

      [41] Braun S, Appel L G, Camorim V L, Schmal M. J Phys Chem B, 2000, 104: 6584

  • 加载中
    1. [1]

      Yifeng TANPing CAOKai MAJingtong LIYuheng WANG . Synthesis of pentaerythritol tetra(2-ethylthylhexoate) catalyzed by h-MoO3/SiO2. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2155-2162. doi: 10.11862/CJIC.20240147

    2. [2]

      Yajin LiHuimin LiuLan MaJiaxiong LiuDehua He . Photothermal Synthesis of Glycerol Carbonate via Glycerol Carbonylation with CO2 over Au/Co3O4-ZnO Catalyst. Acta Physico-Chimica Sinica, 2024, 40(9): 2308005-0. doi: 10.3866/PKU.WHXB202308005

    3. [3]

      Ling Liu Haibin Wang Genrong Qiang . Curriculum Ideological and Political Design for the Comprehensive Preparation Experiment of Ethyl Benzoate Synthesized from Benzyl Alcohol. University Chemistry, 2024, 39(2): 94-98. doi: 10.3866/PKU.DXHX202304080

    4. [4]

      Tianqi BaiKun HuangFachen LiuRuochen ShiWencai RenSongfeng PeiPeng GaoZhongfan Liu . Nanoscale Mechanism of Microstructure-Dependent Thermal Diffusivity in Thick Graphene Sheets. Acta Physico-Chimica Sinica, 2025, 41(3): 2404024-0. doi: 10.3866/PKU.WHXB202404024

    5. [5]

      Bingliang Li Yuying Han Dianyang Li Dandan Liu Wenbin Shang . One-Step Synthesis of Benorilate Guided by Green Chemistry Principles and in vivo Dynamic Evaluation. University Chemistry, 2024, 39(6): 342-349. doi: 10.3866/PKU.DXHX202311070

    6. [6]

      Jiaojiao Yu Bo Sun Na Li Cong Wen Wei Li . Improvement of Classical Organic Experiment Based on the “Reverse-Step Optimization Method”: Taking Synthesis of Ethyl Acetate as an Example. University Chemistry, 2025, 40(3): 333-341. doi: 10.12461/PKU.DXHX202405177

    7. [7]

      Xiaofei LiuHe WangLi TaoWeimin RenXiaobing LuWenzhen Zhang . Electrocarboxylation of Benzylic Phosphates and Phosphinates with Carbon Dioxide. Acta Physico-Chimica Sinica, 2024, 40(9): 2307008-0. doi: 10.3866/PKU.WHXB202307008

    8. [8]

      Zixuan Zhao Miao Fan . “Carbon” with No “Ester”: A Boundless Journey of CO2 Transformation. University Chemistry, 2025, 40(7): 213-217. doi: 10.12461/PKU.DXHX202409040

    9. [9]

      Yanhui GuoLi WeiZhonglin WenChaorong QiHuanfeng Jiang . Recent Progress on Conversion of Carbon Dioxide into Carbamates. Acta Physico-Chimica Sinica, 2024, 40(4): 2307004-0. doi: 10.3866/PKU.WHXB202307004

    10. [10]

      Liuyun ChenWenju WangTairong LuXuan LuoXinling XieKelin HuangShanli QinTongming SuZuzeng QinHongbing Ji . Soft template-induced deep pore structure of Cu/Al2O3 for promoting plasma-catalyzed CO2 hydrogenation to DME. Acta Physico-Chimica Sinica, 2025, 41(6): 100054-0. doi: 10.1016/j.actphy.2025.100054

    11. [11]

      Qianping Li Hua Guan Changfeng Wan Yonghai Song Jianwen Jiang . 大学有机化学复习课项目式教学——以“液晶化合物4-正戊基苯甲酸-4′-正戊基苯酯的合成路线设计与产品制备”为例. University Chemistry, 2025, 40(8): 100-116. doi: 10.12461/PKU.DXHX202410070

    12. [12]

      Lirui Shen Kun Liu Ying Yang Dongwan Li Wengui Chang . Synthesis and Application of Decanedioic Acid-N-Hydroxysuccinimide Ester: Exploration of Teaching Reform in Comprehensive Applied Chemistry Experiment. University Chemistry, 2024, 39(8): 212-220. doi: 10.3866/PKU.DXHX202312035

    13. [13]

      Yinwu Su Xuanwen Zheng Jianghui Du Boda Li Tao Wang Zhiyan Huang . Green Synthesis of 1,3-Dibromoacetone Using Halogen Exchange Method: Recommending a Basic Organic Synthesis Teaching Experiment. University Chemistry, 2024, 39(5): 307-314. doi: 10.3866/PKU.DXHX202311092

    14. [14]

      Xinyu ZENGGuhua TANGJianming OUYANG . Inhibitory effect of Desmodium styracifolium polysaccharides with different content of carboxyl groups on the growth, aggregation and cell adhesion of calcium oxalate crystals. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1563-1576. doi: 10.11862/CJIC.20230374

    15. [15]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    16. [16]

      Yuanyuan Ping Wangqing Kong . 光催化碳氢键官能团化合成1-苯基-1,2-乙二醇. University Chemistry, 2025, 40(6): 238-247. doi: 10.12461/PKU.DXHX202408092

    17. [17]

      Juntao YanLiang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-0. doi: 10.3866/PKU.WHXB202312024

    18. [18]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    19. [19]

      Shuhui Li Rongxiuyuan Huang Yingming Pan . Electrochemical Synthesis of 2,5-Diphenyl-1,3,4-Oxadiazole: A Recommended Comprehensive Organic Chemistry Experiment. University Chemistry, 2025, 40(5): 357-365. doi: 10.12461/PKU.DXHX202407028

    20. [20]

      Zhiquan ZhangBaker RhimiZheyang LiuMin ZhouGuowei DengWei WeiLiang MaoHuaming LiZhifeng Jiang . Insights into the Development of Copper-Based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-0. doi: 10.3866/PKU.WHXB202406029

Metrics
  • PDF Downloads(0)
  • Abstract views(600)
  • HTML views(38)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return