Citation: Liyun Song, Zongcheng Zhan, Xiaojun Liu, Hong He, Wenge Qiu, Xuehong Zi. NOx selective catalytic reduction by ammonia over Cu-ETS-10 catalysts[J]. Chinese Journal of Catalysis, ;2014, 35(7): 1030-1035. doi: 10.1016/S1872-2067(14)60035-8 shu

NOx selective catalytic reduction by ammonia over Cu-ETS-10 catalysts

  • Corresponding author: Hong He, 
  • Received Date: 9 November 2013
    Available Online: 14 January 2014

    Fund Project:

  • Ion exchange method was used to fabricate Cu-ETS-10 titanosilicate catalysts, which possessed high activity, N2 selectivity and SO2 resistance for NOx selective catalytic reduction (SCR). N2 sorption measurements indicated that the microporous catalysts had high surface areas of 288-380 m2/g. The Cu content and speciation were investigated by inductively coupled plasma atomic emission spectrometry, H2 temperature-programmed reduction, and diffuse reflectance infrared Fourier transform spectroscopy. Various Cu species coexisted within the catalyst. Isolated Cu2+ species were the active sites for NH3-SCR, the number of which initially increased and then decreased with increasing Cu content. The catalytic activity of Cu-ETS-10 depended on the isolated Cu2+ species content.
  • 加载中
    1. [1]

      [1] Liu F D, Shan W P, Shi X Y, Zhang C B, He H. Chin J Catal (刘福东, 单文坡, 石晓燕, 张长斌, 贺泓. 催化学报), 2011, 32: 1113

    2. [2]

      [2] Ye Q, Wang L F, Yang R T. Appl Catal A, 2012, 427-428: 24

    3. [3]

      [3] Kwak J H, Tonkyn R G, Kim D H, Szanyi J, Peden C H F. J Catal, 2010, 275: 187

    4. [4]

      [4] Shi X Y, Liu F D, Shan W P, He H. Chin J Catal (石晓燕, 刘福东, 单文波, 贺泓. 催化学报), 2012, 33: 454

    5. [5]

      [5] Putluru S S R, Jensen A D, Riisager A, Fehrmann R. Catal Commun, 2012, 18: 41

    6. [6]

      [6] Putluru S S R, Riisager A, Fehrmann R. Appl Catal B, 2011, 101: 183

    7. [7]

      [7] Corma A, Fornés V, Palomares E. Appl Catal B, 1997, 11: 233

    8. [8]

      [8] Fickel D W, D'Addio E, Lauterbach J A, Lobo R F. Appl Catal B, 2011, 102: 441

    9. [9]

      [9] Xue J J, Wang X Q, Qi G S, Wang J, Shen M Q, Li W. J Catal, 2013, 297: 56

    10. [10]

      [10] Ren L M, Zhang Y B, Zeng S J, Zhu L F, Sun Q, Zhang H Y, Yang C G, Meng X J, Yang X G, Xiao F S. Chin J Catal (任利敏, 张一波, 曾尚景, 朱龙凤, 孙琦, 张海燕, 杨承广, 孟祥举, 杨向光, 肖丰收. 催化学报), 2012, 33: 92

    11. [11]

      [11] Martínez-Franco R, Moliner M, Franch C, Kustov A, Corma A. Appl Catal B, 2012, 127: 273

    12. [12]

      [12] Kuznicki S M. US Patent 4 853 202. 1989

    13. [13]

      [13] Pavel C C, Park S H, Dreier A, Tesche B, Schmidt W. Chem Mater 2006, 18: 3813

    14. [14]

      [14] Bordiga S, Pazé C, Berlier G, Scarano D, Spoto G, Zecchina A, Lamberti C. Catal Today, 2001, 70: 91

    15. [15]

      [15] Ren Y H, Gu M, Hu Y C, Yue B, Jiang L, Kong Z P, He H Y. Chin J Catal (任远航, 辜 敏, 胡怡晨, 岳 斌, 江 磊, 孔祖萍, 贺鹤勇. 催化学报), 2012, 33: 123

    16. [16]

      [16] Surolia P K, Tayade R J, Jasra R V. Ind Eng Chem Res, 2010, 49: 3961

    17. [17]

      [17] Gervasini A, Picciau C, Auroux A. Microporous Mesoporous Mater, 2000, 35-36: 457

    18. [18]

      [18] Carniti P, Gervasini A, Auroux A. Langmuir, 2001, 17: 6938

    19. [19]

      [19] Gao F, Walter E D, Washton N M, Szanyi J, Peden C H F. ACS Catal, 2013, 3: 2083

    20. [20]

      [20] Yu T, Wang J, Shen M Q, Li W. Catal Sci Technol, 2013, 3: 3234

    21. [21]

      [21] Wang J, Yu T, Wang X Q, Qi G S, Xue J J, Shen M Q, Li W. Appl Catal B, 2012, 127: 137

    22. [22]

      [22] Jiang X Y, Ding G H, Lou L P, Chen Y X, Zheng X M. J Mol Catal A, 2004, 218: 187

    23. [23]

      [23] Krisnandi Y K, Lachowski E E, Howe R F. Chem Mater, 2006, 18: 928

    24. [24]

      [24] Góra-Marek K, Palomares A E, Glanowska A, Sadowska K, Datka J. Microporous Mesoporous Mater, 2012, 162: 175

    25. [25]

      [25] Tounsia H, Djemal S, Petitto C, Delahay G. Appl Catal B, 2011, 107: 158

    26. [26]

      [26] Pereda-Ayo B, De La Torre U, Illán-Gómez M J, Bueno-López A, González-Velasco J R. Appl Catal B, 2014, 147: 420

    27. [27]

      [27] Lu G, Li X Y, Qu Z P, Zhao Q D, Zhao L, Chen G H. Chem Eng J, 2011, 168: 1128

    28. [28]

      [28] Praliaud H, Mikhailenko S, Chajar Z, Primet M. Appl Catal B, 1998, 16: 359

    29. [29]

      [29] Zhang Q L, Qiu C T, Xu H D, Lin T, Gong M C, Chen Y Q. Chin J Catal (张秋林, 邱春天, 徐海迪, 林涛, 龚茂初, 陈耀强. 催化学报), 2010, 31: 1411

  • 加载中
    1. [1]

      Xudong LvTao ShaoJunyan LiuMeng YeShengwei Liu . Paired Electrochemical CO2 Reduction and HCHO Oxidation for the Cost-Effective Production of Value-Added Chemicals. Acta Physico-Chimica Sinica, 2024, 40(5): 2305028-0. doi: 10.3866/PKU.WHXB202305028

    2. [2]

      CCS Chemistry | 超分子活化底物自由基促进高效选择性光催化氧化

      . CCS Chemistry, 2025, 7(10.31635/ccschem.025.202405229): -.

    3. [3]

      Pei LiYuenan ZhengZhankai LiuAn-Hui Lu . Boron-Containing MFI Zeolite: Microstructure Control and Its Performance of Propane Oxidative Dehydrogenation. Acta Physico-Chimica Sinica, 2025, 41(4): 2406012-0. doi: 10.3866/PKU.WHXB202406012

    4. [4]

      Junjie Zhang Yue Wang Qiuhan Wu Ruquan Shen Han Liu Xinhua Duan . Preparation and Selective Separation of Lightweight Magnetic Molecularly Imprinted Polymers for Trace Tetracycline Detection in Milk. University Chemistry, 2024, 39(5): 251-257. doi: 10.3866/PKU.DXHX202311084

    5. [5]

      Peng YUELiyao SHIJinglei CUIHuirong ZHANGYanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210

    6. [6]

      Lili Jiang Shaoyu Zheng Xuejiao Liu Xiaomin Xie . Copper-Catalyzed Oxidative Coupling Reactions for the Synthesis of Aryl Sulfones: A Fundamental and Exploratory Experiment for Undergraduate Teaching. University Chemistry, 2025, 40(7): 267-276. doi: 10.12461/PKU.DXHX202408004

    7. [7]

      Xilin Zhao Xingyu Tu Zongxuan Li Rui Dong Bo Jiang Zhiwei Miao . Research Progress in Enantioselective Synthesis of Axial Chiral Compounds. University Chemistry, 2024, 39(11): 158-173. doi: 10.12461/PKU.DXHX202403106

    8. [8]

      Ping ZHANGChenchen ZHAOXiaoyun CUIBing XIEYihan LIUHaiyu LINJiale ZHANGYu'nan CHEN . Preparation and adsorption-photocatalytic performance of ZnAl@layered double oxides. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1965-1974. doi: 10.11862/CJIC.20240014

    9. [9]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    10. [10]

      Yufang GAONan HOUYaning LIANGNing LIYanting ZHANGZelong LIXiaofeng LI . Nano-thin layer MCM-22 zeolite: Synthesis and catalytic properties of trimethylbenzene isomerization reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1079-1087. doi: 10.11862/CJIC.20240036

    11. [11]

      Ye WangRuixiang GeXiang LiuJing LiHaohong Duan . An Anion Leaching Strategy towards Metal Oxyhydroxides Synthesis for Electrocatalytic Oxidation of Glycerol. Acta Physico-Chimica Sinica, 2024, 40(7): 2307019-0. doi: 10.3866/PKU.WHXB202307019

    12. [12]

      Lijun Yue Siya Liu Peng Liu . 不同晶相纳米MnO2的制备及其对生物乙醇选择性氧化催化性能的测试——一个科研转化的综合化学实验. University Chemistry, 2025, 40(8): 225-232. doi: 10.12461/PKU.DXHX202410005

    13. [13]

      Zhiquan ZhangBaker RhimiZheyang LiuMin ZhouGuowei DengWei WeiLiang MaoHuaming LiZhifeng Jiang . Insights into the Development of Copper-Based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-0. doi: 10.3866/PKU.WHXB202406029

    14. [14]

      Xiaofeng ZhuBingbing XiaoJiaxin SuShuai WangQingran ZhangJun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-0. doi: 10.3866/PKU.WHXB202407005

    15. [15]

      Jingkun YuXue YongAng CaoSiyu Lu . Bi-Layer Single Atom Catalysts Boosted Nitrate-to-Ammonia Electroreduction with High Activity and Selectivity. Acta Physico-Chimica Sinica, 2024, 40(6): 2307015-0. doi: 10.3866/PKU.WHXB202307015

    16. [16]

      Xin HanZhihao ChengJinfeng ZhangJie LiuCheng ZhongWenbin Hu . Design of Amorphous High-Entropy FeCoCrMnBS (Oxy) Hydroxides for Boosting Oxygen Evolution Reaction. Acta Physico-Chimica Sinica, 2025, 41(4): 2404023-0. doi: 10.3866/PKU.WHXB202404023

    17. [17]

      Qin Hou Jiayi Hou Aiju Shi Xingliang Xu Yuanhong Zhang Yijing Li Juying Hou Yanfang Wang . Preparation of Cuprous Iodide Coordination Polymer and Fluorescent Detection of Nitrite: A Comprehensive Chemical Design Experiment. University Chemistry, 2024, 39(8): 221-229. doi: 10.3866/PKU.DXHX202312056

    18. [18]

      Qianwen HanTenglong ZhuQiuqiu LüMahong YuQin Zhong . Performance and Electrochemical Asymmetry Optimization of Hydrogen Electrode Supported Reversible Solid Oxide Cell. Acta Physico-Chimica Sinica, 2025, 41(1): 100005-0. doi: 10.3866/PKU.WHXB202309037

    19. [19]

      Wang WangYucheng LiuShengli Chen . Use of NiFe Layered Double Hydroxide as Electrocatalyst in Oxygen Evolution Reaction: Catalytic Mechanisms, Electrode Design, and Durability. Acta Physico-Chimica Sinica, 2024, 40(2): 2303059-0. doi: 10.3866/PKU.WHXB202303059

    20. [20]

      Shijie RenMingze GaoRui-Ting GaoLei Wang . Bimetallic Oxyhydroxide Cocatalyst Derived from CoFe MOF for Stable Solar Water Splitting. Acta Physico-Chimica Sinica, 2024, 40(7): 2307040-0. doi: 10.3866/PKU.WHXB202307040

Metrics
  • PDF Downloads(0)
  • Abstract views(603)
  • HTML views(32)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return