Citation: Mohammad Mazloum-Ardakani, Fariba Sabaghian, Alireza Khoshroo, Hossein Naeimi. Simultaneous determination of the concentrations of isoproterenol, uric acid, and folic acid in solution using a novel nanostructure-based electrochemical sensor[J]. Chinese Journal of Catalysis, ;2014, 35(4): 565-572. doi: 10.1016/S1872-2067(14)60027-9 shu

Simultaneous determination of the concentrations of isoproterenol, uric acid, and folic acid in solution using a novel nanostructure-based electrochemical sensor

  • Corresponding author: Mohammad Mazloum-Ardakani, 
  • Received Date: 18 October 2013
    Available Online: 7 January 2014

  • A carbon paste electrode modified with 2-((7-(2,5-dihydrobenzylideneamino)heptylimino)methyl) benzene-1,4-diol (DHB) and carbon nanotubes were used to simultaneously determine the concentrations of isoproterenol (IP), uric acid (UA), and folic acid (FA) in solution. First, cyclic voltammetry was used to investigate the redox properties of the modified electrode at various scan rates. Next, the mediated oxidation of IP at the modified electrode is described. At the optimum pH of 7.0, the oxidation of IP occurs at a potential about 90 mV less than that of an unmodified carbon paste electrode. Based on the results of differential pulse voltammetry (DPV), the oxidation of IP showed a dynamic range between 10 and 6000 μmol/L, and a detection limit of 1.24 μmol/L. Finally, DPV was used to simultaneously determine the concentrations of IP, UA, and FA in solution at the modified electrode.
  • 加载中
    1. [1]

      [1] Mazloum-Ardakani M, Sheikh-Mohseni M A, Abdollahi-Alibeik M, Benvidi A. Analyst, 2012, 137: 1950

    2. [2]

      [2] Chen X, Zhu J E, Xi Q, Yang W S. Sensor Actuat B, 2012, 161: 648

    3. [3]

      [3] Mazloum-Ardakani M, Taleat Z, Khoshroo A, Beitollahi H, Dehghani H. Biosens Bioelectron, 2012, 35: 75

    4. [4]

      [4] Mazloum-Ardakani M, Khoshroo A. Anal Chim Acta, 2013, 798: 25

    5. [5]

      [5] Justino C I L, Rocha-Santos T, Duarte A C, Rocha-Santos T A. Trends Anal Chem, 2010, 29: 1172

    6. [6]

      [6] Mazloum-Ardakani M, Sheikh-Mohseni M A, Benvidi A. Electroanalysis, 2011, 23: 2822

    7. [7]

      [7] Mazloum-Ardakani M, Sheikh-Mohseni M. In: Naraghi M Ed. Carbon Nanotubes - Growth and Applications. Rijeka: InTech, 2011. 395

    8. [8]

      [8] Yin S B, Zhu Q Q, Qiang Y H, Luo L. Chin J Catal (催化学报), 2012, 33: 290

    9. [9]

      [9] Goodman L S, Gilman A. The Pharmacological Basis of Therapeutics. 9th Ed. New York: McGraw-Hill, 1996

    10. [10]

      [10] Stryer L. Biochemistry. 3rd Ed. New York: Freeman, 1988

    11. [11]

      [11] Gamiz-Gracia L, Garcia-Campaña A M, Huertas-Perez J F, Lara F J. Anal Chim Acta, 2009, 640: 7

    12. [12]

      [12] Lupetti K O, Vieira I C, Fatibello-Filho O. Talanta, 2002, 57: 135

    13. [13]

      [13] Mazloum-Ardakani M, Naser-Sadrabadi A, Sheikh-Mohseni M A, Naeimi H, Benvidi A, Khoshroo A. J Electroanal Chem, 2013, 705: 75

    14. [14]

      [14] Bonifacio V G, Marcolino L H, Teixeira M F S, Fatibello-Filho O. Microchem J, 2004, 78: 55

    15. [15]

      [15] Ensafi A A, Dadkhah M, Karimi-Maleh H. Colloids Surf B, 2011, 84: 148

    16. [16]

      [16] Mashige F, Matsushima Y, Miyata C, Yamada R, Kanazawa H, Sakuma I, Takai N, Shinozuka N, Ohkubo A, Nakahara K. Biomed Chromatogr, 1995, 9: 221

    17. [17]

      [17] Kutluary A, Aslanoglu M. Acta Chim Slov, 2010, 57: 157

    18. [18]

      [18] Mazloum-Ardakani M, Hosseinzadeh L, Khoshroo A, Naeimi H, Moradian M. Electroanalysis, 2014, 26: 275

    19. [19]

      [19] Cunningham S K, Keaveny T V. Clin Chim Acta, 1978, 86: 217

    20. [20]

      [20] Mazloum-Ardakani M, Naser-Sadrabadi A, Sheikh-Mohseni M A, Benvidi A, Naeimi H, Karshenas A. Ionics, 2013, 19: 1663

    21. [21]

      [21] Baghbamidi S E, Beitollahi H, Mohammadi S Z, Tajik S, Soltani-Nejad S, Soltani-Nejad V. Chin J Catal (催化学报), 2013, 34: 1869

    22. [22]

      [22] Hoegger D, Morier P, Vollet C, Heini D, Reymon F, Rossier J S. Anal Bioanal Chem, 2007, 387: 267

    23. [23]

      [23] Pfeiffer C M, Fazili Z, McCoy L, Zhang M, Gunter E W. Clin Chem, 2004, 50: 423

    24. [24]

      [24] Mi Y, Liu Y T, Feng S S. Biomaterials, 2011, 32: 4058

    25. [25]

      [25] Nelson B C, Sharpless K E, Sander L C. J Chromatogr A, 2006, 1135: 203

    26. [26]

      [26] Zhao S L, Yuan H Y, Xie C, Xiao D. J Chromatogr A, 2006, 1107: 290

    27. [27]

      [27] Aurora-Prado M S, Silvaa C A, Tavares M F M, Altria K D. J Chromatogr A, 2004, 1051: 291

    28. [28]

      [28] de Quiros A R B, de Ron C C, Lopez-Hernandez J, Lage-Yusty M A. J Chromatogr A, 2004, 1032: 135

    29. [29]

      [29] Bandžuchova L, Šelešovska R, Navratil T, Chýlková J. Electrochim Acta, 2011, 56: 2411

    30. [30]

      [30] Weng J, Zhang Z W, Sun L P, Wang J A. Biosens Bioelectron, 2011, 26: 1847

    31. [31]

      [31] Prasad B B, Madhuri R, Tiwari M P, Sharma P S. Sens Actuators B, 2010, 146: 321

    32. [32]

      [32] Mazloum-Ardakani M, Khoshroo A. Electrochim Acta, 2013, 103: 77

    33. [33]

      [33] Keyvanfard M, Karimi-Maleh H, Alizad K. Chin J Catal (催化学报), 2013, 34: 1883

    34. [34]

      [34] Laviron E. J Electroanal Chem, 1979, 101: 19

    35. [35]

      [35] Sharp M, Petersson M, Edstrom K. J Electroanal Chem, 1979, 95: 123

    36. [36]

      [36] Bard A J, Faulkner L R. Electrochemical Methods: Fundamentals and Applications. 2nd Ed. New York: Wiley, 2001

    37. [37]

      [37] Galus Z. Fundamentals of Electrochemical Analysis. NewYork: Ellis Horwood, 1976

    38. [38]

      [38] Ghorbani-Bidkorbeh F, Shahrokhian S, Mohammadi A, Dinarvand R. Electrochim Acta, 2010, 55: 2752

    39. [39]

      [39] Ensafi A A, Maleh H K. Int J Electrochem Sci, 2010, 5: 1484

    40. [40]

      [40] Beitollahi H, Raoof J B, Karimi-Maleh H, Hosseinzadeh R. J Solid State Electrochem, 2012, 16: 1701

    41. [41]

      [41] Beitollahi H, Mohadesi A, Mohammadi S, Akbari A. Electrochim Acta, 2012, 68: 220

    42. [42]

      [42] Ensafi A A, Bahrami H, Karimi-Maleh H, Mallakpour S. Chin J Catal (催化学报), 2012, 33: 1919

  • 加载中
    1. [1]

      Xiying WuAnze LiuYuzhong YanYing LuHuan Wang . Folic acid ameliorates the immunogenicity of PEGylated liposomes. Chinese Chemical Letters, 2025, 36(6): 110285-. doi: 10.1016/j.cclet.2024.110285

    2. [2]

      Qingming ZengYanjun WenBeibei GaoQingyan ZhangLulin GuoChao ZhangJiachen WangQingyi Zeng . Self-driven photoelectrocatalytic systems with carbon-felt-loaded carboxylated carbon nanotube cathodes: Reduction of uranyl, oxidation of organics, and power generation. Chinese Chemical Letters, 2025, 36(9): 110673-. doi: 10.1016/j.cclet.2024.110673

    3. [3]

      Chunru Liu Ligang Feng . Advances in anode catalysts of methanol-assisted water-splitting reactions for hydrogen generation. Chinese Journal of Structural Chemistry, 2023, 42(10): 100136-100136. doi: 10.1016/j.cjsc.2023.100136

    4. [4]

      Guan-Nan Xing Di-Ye Wei Hua Zhang Zhong-Qun Tian Jian-Feng Li . Pd-based nanocatalysts for oxygen reduction reaction: Preparation, performance, and in-situ characterization. Chinese Journal of Structural Chemistry, 2023, 42(11): 100021-100021. doi: 10.1016/j.cjsc.2023.100021

    5. [5]

      Shaojie Ding Henan Wang Xiaojing Dai Yuru Lv Xinxin Niu Ruilian Yin Fangfang Wu Wenhui Shi Wenxian Liu Xiehong Cao . Mn-modulated Co–N–C oxygen electrocatalysts for robust and temperature-adaptative zinc-air batteries. Chinese Journal of Structural Chemistry, 2024, 43(7): 100302-100302. doi: 10.1016/j.cjsc.2024.100302

    6. [6]

      Pingfan ZhangShihuan HongNing SongZhonghui HanFei GeGang DaiHongjun DongChunmei Li . Alloy as advanced catalysts for electrocatalysis: From materials design to applications. Chinese Chemical Letters, 2024, 35(6): 109073-. doi: 10.1016/j.cclet.2023.109073

    7. [7]

      Ming YueYi-Rong WangJia-Yong WengJia-Li ZhangDa-Yu ChiMingjin ShiXiao-Gang HuYifa ChenShun-Li LiYa-Qian Lan . Multi-metal porous crystalline materials for electrocatalysis applications. Chinese Chemical Letters, 2025, 36(6): 110049-. doi: 10.1016/j.cclet.2024.110049

    8. [8]

      Yicheng LiQian LiuTianhao LiHao BiZhurui Shen . Recent achievements in rare earth modified metal oxides for environmental and energy applications: A review. Chinese Chemical Letters, 2025, 36(9): 110698-. doi: 10.1016/j.cclet.2024.110698

    9. [9]

      Yue ZhangXiaoya FanXun HeTingyu YanYongchao YaoDongdong ZhengJingxiang ZhaoQinghai CaiQian LiuLuming LiWei ChuShengjun SunXuping Sun . Ambient electrosynthesis of urea from carbon dioxide and nitrate over Mo2C nanosheet. Chinese Chemical Letters, 2024, 35(8): 109806-. doi: 10.1016/j.cclet.2024.109806

    10. [10]

      Xinyu RenHong LiuJingang WangJiayuan Yu . Electrospinning-derived functional carbon-based materials for energy conversion and storage. Chinese Chemical Letters, 2024, 35(6): 109282-. doi: 10.1016/j.cclet.2023.109282

    11. [11]

      Chenhao ZhangQian ZhangYezhou HuHanyu HuJunhao YangChang YangYe ZhuZhengkai TuDeli Wang . N-doped carbon confined ternary Pt2NiCo intermetallics for efficient oxygen reduction reaction. Chinese Chemical Letters, 2025, 36(3): 110429-. doi: 10.1016/j.cclet.2024.110429

    12. [12]

      Qi ZhangBin HanYucheng JinMingrun LiEnhui ZhangJianzhuang Jiang . 2D and 3D phthalocyanine covalent organic frameworks for electrocatalytic carbon dioxide reduction. Chinese Chemical Letters, 2025, 36(9): 110330-. doi: 10.1016/j.cclet.2024.110330

    13. [13]

      Xinyu WuJianfeng LuZihao ZhuSuijun LiuHerui Wen . Recent advances of metal-organic frameworks and MOF-derived materials based on p-block metal for the electrochemical reduction of carbon dioxide. Chinese Chemical Letters, 2025, 36(7): 110151-. doi: 10.1016/j.cclet.2024.110151

    14. [14]

      Lin ZhangJianlong LiMaoyuan HuYao XuXiaoli XiongZhaoyu Jin . MOF-derived beaded stream-like nitrogen and phosphorus-codoped carbon-coated Fe3O4 nanocomposites via lattice-oxygen-mediated mechanism for efficient water oxidation. Chinese Chemical Letters, 2025, 36(8): 111123-. doi: 10.1016/j.cclet.2025.111123

    15. [15]

      Zhifeng CAIYing WUYanan LIGuiyu MENGTianyu MIAOYihao ZHANG . Effective detection of malachite green by folic acid stabilized silver nanoclusters. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 983-993. doi: 10.11862/CJIC.20240394

    16. [16]

      Shengkai LiYuqin ZouChen ChenShuangyin WangZhao-Qing Liu . Defect engineered electrocatalysts for C–N coupling reactions toward urea synthesis. Chinese Chemical Letters, 2024, 35(8): 109147-. doi: 10.1016/j.cclet.2023.109147

    17. [17]

      Xianxu ChuLu WangJunru LiHui Xu . Surface chemical microenvironment engineering of catalysts by organic molecules for boosting electrocatalytic reaction. Chinese Chemical Letters, 2024, 35(8): 109105-. doi: 10.1016/j.cclet.2023.109105

    18. [18]

      Wei ZhouXi ChenLin LuXian-Rong SongMu-Jia LuoQiang Xiao . Recent advances in electrocatalytic generation of indole-derived radical cations and their applications in organic synthesis. Chinese Chemical Letters, 2024, 35(4): 108902-. doi: 10.1016/j.cclet.2023.108902

    19. [19]

      Zhihao GuJiabo LeHehe WeiZehui SunMahmoud Elsayed HafezWei Ma . Unveiling the intrinsic properties of single NiZnFeOx entity for promoting electrocatalytic oxygen evolution. Chinese Chemical Letters, 2024, 35(4): 108849-. doi: 10.1016/j.cclet.2023.108849

    20. [20]

      Zhao LiHuimin YangWenjing ChengLin Tian . Recent progress of in situ/operando characterization techniques for electrocatalytic energy conversion reaction. Chinese Chemical Letters, 2024, 35(9): 109237-. doi: 10.1016/j.cclet.2023.109237

Metrics
  • PDF Downloads(485)
  • Abstract views(780)
  • HTML views(10)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return