Citation:
ZHENG Yun, PAN Zhiming, WANG Xinchen. Advances in photocatalysis in China[J]. Chinese Journal of Catalysis,
;2013, 34(3): 524-535.
doi:
10.1016/S1872-2067(12)60548-8
-
We briefly describe the developments in photocatalysis research in China in the three time periods of 1975‒1985, 1985‒1995, and 1995‒2012, focusing on advances in photocatalytic materials and their modifications, applications, and reaction mechanisms. This short review also indicates some vital problems and future development trends in photocatalysis for water splitting, CO2 reduction, environmental purification, and selective organic photosynthesis.
-
Keywords:
- Photocatalysis,
- Semiconductor,
- Solar energy,
- Water splitting
-
-
-
[1]
[1] Fujishima A, Honda K. Nature, 1972, 238: 37
-
[2]
[2] Tong H, Ouyang S X, Bi Y P, Umezawa N, Oshikiri M, Ye J H. Adv Mater, 2012, 24: 229
-
[3]
[3] Jin Z S. Acta Energiae Solaris Sinica, 1982, 3: 179
-
[4]
[4] Gao F, Li S B, Chen Y W. Acta Energiae Solaris Sinica, 1981, 4: 396
-
[5]
[5] Gao F, Li S B, He Y G. Acta Energiae Solaris Sinica, 1983, 1: 58
-
[6]
[6] Kiwi J, Grätzel M. Angew Chem, Int Ed, 1979, 18: 624
-
[7]
[7] Chen L H, Gu W Z, Zhu X W, Wang F D, Song Y Z, Hu J H. J Photochem Photobio A, 1993, 74: 85
-
[8]
[8] Li S B. J Mol Catal, 1988, 2: 217
-
[9]
[9] Wang Z H, Zhuang Q X. J Photochem Photobio A, 1993, 75: 105
-
[10]
[10] Wang S S, Wang Z H, Zhuang Q X. Appl Catal B, 1992, 1: 257
-
[11]
[11] Chen X B, Mao S S. Chem Rev, 2007, 107: 2891
-
[12]
[12] Chen X B. Chin J Catal (陈晓波. 催化学报), 2009, 30: 839
-
[13]
[13] Jing L Q, Qu Y C, Wang B Q, Li S D, Jiang B J, Yang L B, Fu W, Fu H G, Sun J Z. Sol Energy Mater Sol Cells, 2006, 90: 1773
-
[14]
[14] Linsebigler A L, Lu G Q, Yates J T. Chem Rev, 1995, 95: 735
-
[15]
[15] Gao Z Q, Yang S G, Ta N, Sun C. J Hazard Mater, 2007, 145: 424
-
[16]
[16] Wang Y W, Zhang L Z, Deng K J, Chen X Y, Zou Z G. J Phys Chem C, 2007, 111: 2709
-
[17]
[17] Wu X F, Song H Y, Yoon J M, Yu Y T, Chen Y F. Langmuir, 2009, 25: 6438
-
[18]
[18] Zhang N, Liu S Q, Fu X Z, Xu Y J. J Phys Chem C, 2011, 115: 9136
-
[19]
[19] Yang H G, Sun C H, Qiao S Z, Zou J, Liu G, Smith S C, Cheng H M, Lu G Q. Nature, 2008, 453: 638
-
[20]
[20] Liu S W, Yu J G, Jaroniec M. J Am Chem Soc, 2010, 132: 11914
-
[21]
[21] Pan J, Liu G, Lu G Q, Cheng H M. Angew Chem, Int Ed, 2011, 50: 2133
-
[22]
[22] Han X G, Kuang Q, Jin M S, Xie Z X, Zheng L S. J Am Chem Soc, 2009, 131: 3152
-
[23]
[23] Guo W X, Zhang F, Lin C J, Wang Z L. Adv Mater, 2012, 24: 4761
-
[24]
[24] Yu J C, Zhang L Z, Yu J G. Chem Mater, 2002, 14: 4647
-
[25]
[25] Wang X C, Yu J C, Ho C M, Hou Y D, Fu X Z. Langmuir, 2005, 21: 2552
-
[26]
[26] Yu J G, Su Y R, Cheng B. Adv Funct Mater, 2007, 17: 1984
-
[27]
[27] Yu J G, Zhang L J, Cheng B, Su Y R. J Phys Chem C, 2007, 111: 10582
-
[28]
[28] Yu J G, Wang G H. J Phys Chem Solids, 2008, 69: 1147
-
[29]
[29] Yu H G, Yu J G, Cheng B, Lin J. J Hazard Mater, 2007, 147: 581
-
[30]
[30] Zhang F X, Zhang X, Chen J X, Liu Zh G, Gao W L, Jin R C, Guan N J. Chin J Catal (章福祥, 张秀, 陈继新, 刘智广, 高文亮, 金瑞彩, 关乃佳. 催化学报), 2003, 24: 877
-
[31]
[31] Wang P, Huang B B, Dai Y, Whangbo M H. Phys Chem Chem Phys, 2012, 14: 9813
-
[32]
[32] Yu J G, Dai G P, Huang B B. J Phys Chem C, 2009, 113: 16394
-
[33]
[33] Tong T Z, Zhang J L, Tian B Z, Chen F, He D N. J Hazard Mater, 2008, 155: 572
-
[34]
[34] Yu J C, Yu J G, Ho W K, Jiang Z T, Zhang L Z. Chem Mater, 2002, 14: 3808
-
[35]
[35] Yang P, Lu C, Hua N P, Du Y K. Mater Lett, 2002, 57: 794
-
[36]
[36] Li X Z, Li F B, Yang C L, Ge W K. J Photochem Photobiol A, 2001, 141: 209
-
[37]
[37] Yu H B, Chen S, Quan X, Zhao H M, Zhang Y B. Environ Sci Technol, 2008, 42: 3791
-
[38]
[38] Huang H J, Li D Z, Lin Q, Zhang W J, Shao Y, Chen Y B, Sun M, Fu X Z. Environ Sci Technol, 2009, 43: 4164
-
[39]
[39] Zhang L W, Wang Y J, Xu T G, Zhu S B, Zhu Y F. J Mol Catal A, 2010, 331: 7
-
[40]
[40] Zhang Y H, Tang Z R, Fu X Z, Xu Y J. ACS Nano, 2010, 4: 7303
-
[41]
[41] Jin Z L, Zhang X J, Lu G X, Li S B. J Mol Catal A, 2006, 259: 275
-
[42]
[42] Jin Z L, Zhang X J, Li Y X, Li S B, Lu G X. Catal Commun, 2007, 8: 1267
-
[43]
[43] Fu X Zh, Ding Zh X, Su W Y, Li D Zh. Chin J Catal (付贤智, 丁正新, 苏文悦, 李旦振. 催化学报), 1999, 20: 321
-
[44]
[44] Su W Y, Chen Y L, Fu X Zh, Wei K M. Chin J Catal (苏文悦, 陈亦琳, 付贤智, 魏可镁. 催化学报), 2001, 22: 175
-
[45]
[45] Yu J C, Zhang L Z, Zheng Z, Zhao J C. Chem Mater, 2003,15: 2280
-
[46]
[46] Hou Y D, Wu L, Wang X C, Ding Z X, Li Z H, Fu X Z. J Catal, 2007, 250: 12
-
[47]
[47] Jiang J, Zhao K, Xiao X Y, Zhang L Z. J Am Chem Soc, 2012, 134: 4473
-
[48]
[48] Huang J H, Ding K N, Hou Y D, Wang X C, Fu X Z. ChemSusChem, 2008, 1: 1011
-
[49]
[49] Liang S J, Wu L, Bi J H, Wang W J, Gao J, Li Z H, Fu X Z. Chem Commun, 2010, 46: 1446
-
[50]
[50] Ma L L, Sun H Z, Zhang Y G, Lin Y L, Li J L, Wang E K, Yu Y, Tan M, Wang J B. Nanotechnology, 2008, 19: 115709
-
[51]
[51] Xie Z, Zhu Y G, Xu J, Huang H T, Chen D, Shen G Z. CrystEngComm, 2011, 13: 6393
-
[52]
[52] Cao S W, Zhu Y J. J Phys Chem C, 2008, 112: 6253
-
[53]
[53] Wu L, Bi J H, Li Z H, Wang X X, Fu X Z. Catal Today, 2008, 131: 15
-
[54]
[54] Tang J W, Zou Z G, Ye J H. Angew Chem, Int Ed, 2004, 43: 4463
-
[55]
[55] Guo Y H, Li D F, Hu C W, Wang Y H, Wang E B. Chem J Chin U, 2001, 22: 1453
-
[56]
[56] Yan G Y, Wang X X, Fu X Z, Li D Z. Catal Today, 2004, 93-95: 851
-
[57]
[57] Li L, Li G D, Yan C, Mu X Y, Pan X L, Zou X X, Wang K X, Chen J S. Angew Chem, Int Ed, 2011, 50: 8299
-
[58]
[58] Fu Y H, Sun D R, Chen Y J, Huang R K, Ding Z X, Fu X Z, Li Z H. Angew Chem, Int Ed, 2012, 124: 3420
-
[59]
[59] Liu G, Niu P, Yin L C, Cheng H M. J Am Chem Soc, 2012, 134: 9070
-
[60]
[60] Xia X H, Jia Z J, Yu Y, Liang Y, Wang Z, Ma L L. Carbon, 2007, 45: 717
-
[61]
[61] Li Q, Guo B D, Yu J G, Ran J R, Zhang B H, Yan H J, Gong J R. J Am Chem Soc, 2011, 133: 10878
-
[62]
[62] An X Q, Yu J C, Wang Y, Hu Y M, Xu X L, Zhang G J. J Mater Chem, 2012, 22: 8525
-
[63]
[63] Wang X C, Maeda K, Thomas A, Takanabe K, Xin G, Carlsson J M, Domen K, Antonietti M. Nat Mater, 2009, 8: 76
-
[64]
[64] Zhang J S, Zhang G G, Chen X F, Lin S, Möhlmann L, Dolega G, Lipner G, Antonietti M, Blechert S, Wang X C. Angew Chem, Int Ed, 2012, 51: 3183
-
[65]
[65] Cui Y J, Ding Z X, Liu P, Antonietti M, Fu X Z, Wang X C. Phys Chem Chem Phys, 2012, 14: 1455
-
[66]
[66] Zhao W, Ma W H, Chen C C, Zhao J C, Shuai Z G. J Am Chem Soc, 2004, 126: 4782
-
[67]
[67] Wu J C S, Chen C H. J Photochem Photobio A, 2004, 163: 509
-
[68]
[68] Hsien Y H, Chang C F, Chen Y H, Cheng S. Appl Catal B, 2001, 31: 241
-
[69]
[69] Wang K H, Hsieh Y H, Chou M Y, Chang C Y. Appl Catal B, 1999, 21: 1
-
[70]
[70] Wei T Y, Wan C C. Ind Eng Chem Res, 1991, 30: 1293
-
[71]
[71] Tsai S J, Cheng S. Catal Today, 1997, 33: 227
-
[72]
[72] Zhang C, Zhu Y F. Chem Mater, 2005, 17: 3537
-
[73]
[73] Zhu S B, Xu T G, Fu H B, Zhao J C, Zhu Y F. Environ Sci Technol, 2007, 41: 6234
-
[74]
[74] Zhang H, Zong R L, Zhao J C, Zhu Y F. Environ Sci Technol, 2008, 42: 3803
-
[75]
[75] Zhang L W, Fu H B, Zhu Y F. Adv Funct Mater, 2008, 18: 2180
-
[76]
[76] Xu T G, Zhang L W, Cheng H Y, Zhu Y F. Appl Catal B, 2011, 101: 382
-
[77]
[77] Wang P, Huang B B, Qin X Y, Zhang X Y, Dai Y, Wei J Y, Whangbo M H. Angew Chem, Int Ed, 2008, 47: 7931
-
[78]
[78] Wang P, Huang B B, Zhang X Y, Qin X Y, Jin H, Dai Y, Wang Z Y, Wei J Y, Zhan J, Wang S Y, Wang J P, Whangbo M H. Chem Eur J, 2009, 15: 1821
-
[79]
[79] Chen X B, Liu L, Yu P Y, Mao S S. Science, 2011, 331: 746
-
[80]
[80] Zhang J, Xu Q, Feng Z C, Li M J, Li C. Angew Chem, Int Ed, 2008, 47: 1766
-
[81]
[81] Zong X, Yan H J, Wu G P, Ma G J, Wen F Y, Wang L, Li C. J Am Chem Soc, 2008, 130: 7176
-
[82]
[82] Yan H J, Yang J H, Ma G J, Wu G P, Zong X, Lei Z B, Shi J Y, Li C. J Catal, 2009, 266: 165
-
[83]
[83] Xiang Q J, Yu J G, Jaroniec M. J Am Chem Soc, 2012, 134: 6575
-
[84]
[84] Lv X J, Zhou S X, Zhang C, Chang H X, Chen Y, Fu W F. J Mater Chem, 2012, 22: 18542
-
[85]
[85] Wu C P, Zhou Y, Zou Zh G. Chin J Catal (吴聪萍, 周勇, 邹志刚. 催化学报), 2011, 32: 1565
-
[86]
[86] Tseng I H, Chang W C, Wu J C S. Appl Catal B, 2002, 37: 37
-
[87]
[87] Tseng I H, Chang W C, Chou H Y. J Catal, 2004, 221: 432
-
[88]
[88] Chen S Zh, Zhong Sh H, Xiao X F. Chin J Catal (陈崧哲, 钟顺和, 肖秀芬. 催化学报), 2003, 24: 67
-
[89]
[89] Mei Ch S, Zhong Sh H. Chin J Catal (梅长松, 钟顺和. 催化学报), 2004, 25: 937
-
[90]
[90] Liu Q, Zhou Y, Kou J H, Chen X Y, Tian Z P, Gao J, Yan S C, Zou Z G. J Am Chem Soc, 2010, 132: 14385
-
[91]
[91] Liu Q, Zhou Y, Tian Z P, Chen X Y, Gao J, Zou Z G. J Mater Chem, 2012, 22: 2033
-
[92]
[92] Yan S C, Wan L J, Li Z S, Zou Z G. Chem Commun, 2011, 47: 5632
-
[93]
[93] Yan S C, Ouyang S X, Gao J, Yang M, Feng J Y, Fan X X, Wan L J, Li Z S, Ye J H, Zhou Y, Zou Z G. Angew Chem, Int Ed, 2010, 49: 6400
-
[94]
[94] Yan S C, Yu H, Wang N Y, Li Z S, Zou Z G. Chem Commun, 2012, 48: 1048
-
[95]
[95] Zhang M, Chen C C, Ma W H, Zhao J C. Angew Chem, Int Ed, 2008, 47: 9730
-
[96]
[96] Wang Q, Zhang M, Chen C C, Ma W H, Zhao J C. Angew Chem, Int Ed, 2010, 49: 7976
-
[97]
[97] Zhang Y H, Tang Z R, Fu X Z, Xu Y J. ACS Nano, 2011, 5: 7426
-
[98]
[98] Zhang N, Zhang Y H, Pan X Y, Yang M Q, Xu Y J. J Phys Chem C, 2012, 116: 18023
-
[99]
[99] Lang X J, Ji H W, Chen C C, Ma W H, Zhao J C. Angew Chem, Int Ed, 2011, 50: 3934
-
[100]
[100] Lang X J, Ma W H, Zhao Y B, Chen C C, Ji H W, Zhao J C. Chem Eur J, 2012, 18: 2624
-
[101]
[101] Tao Y T, Yeh W L, Tu C L,Chow Y L. J Mol Catal, 1991, 67: 105
-
[102]
[102] Li X Y, Kutal C. J Mater Sci Lett, 2002, 21: 1525
-
[103]
[103] Huang H Y, Zhou J H, Liu H L, Zhou Y H, Feng Y Y. J Hazard Mater, 2010, 178: 994
-
[104]
[104] Lu H Q, Zho J H, Li L, Gong L M, Zheng J F, Zhang L X,Wang Z J, Zhang J, Zhu Z P. Energy Environ Sci, 2011, 4: 3384
-
[105]
[105] Chen C C, Ma W H, Zhao J C. Chem Soc Rev, 2010, 39: 4206
-
[106]
[106] Wu T X, Liu G M, Zhao J C, Hidaka H, Serpone N. J Phys Chem B, 1998, 102: 5845
-
[107]
[107] Wu T X, Lin T, Zhao J C, Hidaka H, Serpone N. Environ Sci Technol, 1999, 33: 1379
-
[108]
[108] Zhang M, Wang Q, Chen C C, Zang L, Ma W H, Zhao J C. Angew Chem Int Ed, 2009, 48: 6081
-
[109]
[109] Shi J Y, Chen J, Feng Z C, Chen T, Lian Y X, Wang X L, Li C. J Phys Chem C, 2007, 111: 693
-
[110]
[110] Chen T, Feng Z C, Wu G P, Shi J Y, Ma G J, Ying P L, Li C. J Phys Chem C, 2007, 111: 8005
-
[111]
[111] Zhang J, Zhang Y P, Lei Y K, Pan C X. Catal Sci Technol, 2011, 1: 273
-
[112]
[112] Wang Y H, Huang F, Pan D M, Li B, Chen D G, Lin W W, Chen X Y, Li R F, Lin Z. Chem Commun, 2009, 44: 6783
-
[113]
[113] Guo Q, Xu C B, Ren Z F, Yang W S, Ma Z B, Dai D X, Fan H J, Minton T K, Yang X M. J Am Chem Soc, 2012, 134: 13366
-
[114]
[114] Li Y F, Liu Z P, Liu L L, Gao W G. J Am Chem Soc, 2010, 132: 13008
-
[115]
[115] Li Y F, Liu Z P. J Am Chem Soc, 2011, 133: 15743
-
[1]
-
-
-
[1]
Xinxin JING , Weiduo WANG , Hesu MO , Peng TAN , Zhigang CHEN , Zhengying WU , Linbing SUN . Research progress on photothermal materials and their application in solar desalination. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1033-1064. doi: 10.11862/CJIC.20230371
-
[2]
Huan LI , Shengyan WANG , Long Zhang , Yue CAO , Xiaohan YANG , Ziliang WANG , Wenjuan ZHU , Wenlei ZHU , Yang ZHOU . Growth mechanisms and application potentials of magic-size clusters of groups Ⅱ-Ⅵ semiconductors. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1425-1441. doi: 10.11862/CJIC.20240088
-
[3]
Yuanyin Cui , Jinfeng Zhang , Hailiang Chu , Lixian Sun , Kai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-. doi: 10.3866/PKU.WHXB202405016
-
[4]
Meng Lin , Hanrui Chen , Congcong Xu . Preparation and Study of Photo-Enhanced Electrocatalytic Oxygen Evolution Performance of ZIF-67/Copper(I) Oxide Composite: A Recommended Comprehensive Physical Chemistry Experiment. University Chemistry, 2024, 39(4): 163-168. doi: 10.3866/PKU.DXHX202308117
-
[5]
Zhuo WANG , Junshan ZHANG , Shaoyan YANG , Lingyan ZHOU , Yedi LI , Yuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067
-
[6]
Qin Hu , Liuyun Chen , Xinling Xie , Zuzeng Qin , Hongbing Ji , Tongming Su . Ni掺杂构建电子桥及激活MoS2惰性基面增强光催化分解水产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2406024-. doi: 10.3866/PKU.WHXB202406024
-
[7]
Xi YANG , Chunxiang CHANG , Yingpeng XIE , Yang LI , Yuhui CHEN , Borao WANG , Ludong YI , Zhonghao HAN . Co-catalyst Ni3N supported Al-doped SrTiO3: Synthesis and application to hydrogen evolution from photocatalytic water splitting. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 440-452. doi: 10.11862/CJIC.20240371
-
[8]
Kun WANG , Wenrui LIU , Peng JIANG , Yuhang SONG , Lihua CHEN , Zhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037
-
[9]
Jianyin He , Liuyun Chen , Xinling Xie , Zuzeng Qin , Hongbing Ji , Tongming Su . ZnCoP/CdLa2S4肖特基异质结的构建促进光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2404030-. doi: 10.3866/PKU.WHXB202404030
-
[10]
Wenxiu Yang , Jinfeng Zhang , Quanlong Xu , Yun Yang , Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014
-
[11]
Xuejiao Wang , Suiying Dong , Kezhen Qi , Vadim Popkov , Xianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-. doi: 10.3866/PKU.WHXB202408005
-
[12]
Zijian Jiang , Yuang Liu , Yijian Zong , Yong Fan , Wanchun Zhu , Yupeng Guo . Preparation of Nano Zinc Oxide by Microemulsion Method and Study on Its Photocatalytic Activity. University Chemistry, 2024, 39(5): 266-273. doi: 10.3866/PKU.DXHX202311101
-
[13]
Xia ZHANG , Yushi BAI , Xi CHANG , Han ZHANG , Haoyu ZHANG , Liman PENG , Shushu HUANG . Preparation and photocatalytic degradation performance of rhodamine B of BiOCl/polyaniline. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 913-922. doi: 10.11862/CJIC.20240255
-
[14]
Ruolin CHENG , Haoran WANG , Jing REN , Yingying MA , Huagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349
-
[15]
Zhiquan Zhang , Baker Rhimi , Zheyang Liu , Min Zhou , Guowei Deng , Wei Wei , Liang Mao , Huaming Li , Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029
-
[16]
Jingyu Cai , Xiaoyu Miao , Yulai Zhao , Longqiang Xiao . Exploratory Teaching Experiment Design of FeOOH-RGO Aerogel for Photocatalytic Benzene to Phenol. University Chemistry, 2024, 39(4): 169-177. doi: 10.3866/PKU.DXHX202311028
-
[17]
Yulian Hu , Xin Zhou , Xiaojun Han . A Virtual Simulation Experiment on the Design and Property Analysis of CO2 Reduction Photocatalyst. University Chemistry, 2025, 40(3): 30-35. doi: 10.12461/PKU.DXHX202403088
-
[18]
Ronghui LI . Photocatalysis performance of nitrogen-doped CeO2 thin films via ion beam-assisted deposition. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1123-1130. doi: 10.11862/CJIC.20240440
-
[19]
Ke Li , Chuang Liu , Jingping Li , Guohong Wang , Kai Wang . 钛酸铋/氮化碳无机有机复合S型异质结纯水光催化产过氧化氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-. doi: 10.3866/PKU.WHXB202403009
-
[20]
Chenye An , Abiduweili Sikandaier , Xue Guo , Yukun Zhu , Hua Tang , Dongjiang Yang . 红磷纳米颗粒嵌入花状CeO2分级S型异质结高效光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2405019-. doi: 10.3866/PKU.WHXB202405019
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(513)
- HTML views(122)