Citation: ZHENG Anmin, HUANG Shing-Jong, WANG Qiang, ZHANG Hailu, DENG Feng, LIU Shang-Bin. Progress in development and application of solid-state NMR for solid acid catalysis[J]. Chinese Journal of Catalysis, ;2013, 34(3): 436-491. doi: 10.1016/S1872-2067(12)60528-2 shu

Progress in development and application of solid-state NMR for solid acid catalysis

  • Corresponding author: DENG Feng,  LIU Shang-Bin, 
  • Received Date: 30 June 2012
    Available Online: 10 September 2012

    Fund Project: 国家自然科学基金(20933009, 21073228, 21210005, 21103223, 21173255) (20933009, 21073228, 21210005, 21103223, 21173255)台湾国科会(NSC98-2113-M-001-017-MY3, NSC101-2113-M-001-020-MY3). (NSC98-2113-M-001-017-MY3, NSC101-2113-M-001-020-MY3)

  • Solid acid catalysts have been widely used in petrochemical industry and their catalytic activities are normally dictated by their acidities. Unlike conventional acidity characterization techniques such as titration, infrared, or temperature-programmed desorption, detailed acid features of solid acids, such as type, distribution, concentration, and strength of acid sites may be attained by advanced methods involving pertinent probe molecules and state-of-the-art solid-state nuclear magnetic resonance (SSNMR) techniques,i.e. double resonance and two-dimensional correlation spectroscopies. In addition, in situ solid-state NMR method is capable of probing the guest/host properties of the reactant at the active centers of the catalystsas well as the intermediate species formed during conversion. Itprovides direct experimental evidence for exploring the mechanism of catalytic reaction. In this report, the fundamental theory and the recent developments in solid-state NMR are reviewed with specific focus on relevant applications in structure and acidity characterization of solid acid catalysts and catalytic mechanisms.
  • 加载中
    1. [1]

      [1] Xin Q, Luo M F eds. Modern Catalytic Research Methods.Beijing: Science Press (辛勤, 罗孟飞. 现代催化研究方法. 北京: 科学出版社), 2009. 314

    2. [2]

      [2] Zheng A M, Huang S J, Liu S B, Deng F. Phys Chem Chem Phys, 2011, 13: 14889

    3. [3]

      [3] Yu Zh W, Zheng A M, Wang Q, Huang X J, Deng F, Liu Sh B. Chin J Magn Reson (喻志武, 郑安民, 王强, 黄信炅, 邓风, 刘尚斌. 波谱学杂志), 2010, 27: 485

    4. [4]

      [4] Peng P. Chem Ind Eng Prog (彭朴. 化工进展), 2008, 27: 157

    5. [5]

      [5] Nishiyama Y, Endo Y, Nemoto T, Utsumi H, Yamauchi K, Hioka K, Asakura T. J Magn Reson, 2011, 208: 44

    6. [6]

      [6] Metz G, Wu X L, Smith S O. J Magn Reson Ser A, 1994, 110: 219

    7. [7]

      [7] Hediger S, Meier B H, Ernst R R. Chem Phys Lett, 1995, 240: 449

    8. [8]

      [8] Bennett A E, Rienstra C M, Auger M, Lakshmi K V, Griffin R G. J Chem Phys, 1995, 103: 6951

    9. [9]

      [9] Ashida J, Asakura T. J Magn Reson, 2003, 165: 180

    10. [10]

      [10] Fung B M, Khitrin A K, Ermolaev K. J Magn Reson, 2000, 142: 97

    11. [11]

      [11] De Paëpe G, Lesage A, Emsley L. J Chem Phys, 2003, 119: 4833

    12. [12]

      [12] Waugh J S, Huber L M, Haeberlen U. Phys Rev Lett, 1968, 20: 180

    13. [13]

      [13] Rhim W K, Elleman D D, Vaughan R W. J Chem Phys, 1973, 58: 1772

    14. [14]

      [14] Burum D P, Rhim W K. J Chem Phys, 1979, 71: 944

    15. [15]

      [15] Burum D P, Bielecki A. J Magn Reson, 1991, 94: 645

    16. [16]

      [16] Lee M, Goldburg W I. Phys Rev, 1965, 140: 1261

    17. [17]

      [17] Bielecki A, Kolbert A C, Levitt M H. Chem Phys Lett, 1989, 155: 341

    18. [18]

      [18] Vinogradov E, Madhu P K, Vega S. Chem Phys Lett, 1999, 314: 443

    19. [19]

      [19] Sakellariou D, Lesage A, Hodgkinson P, Emsley L. Chem Phys Lett, 2000, 319: 253

    20. [20]

      [20] Taylor R E, Pembleton R G, Ryan L M, Gerstein B C. J Chem Phys, 1979, 71: 4541

    21. [21]

      [21] Ryon L M, Taylor R E, Paff A J, Gerstein B C. J Chem Phys, 1980, 72: 508

    22. [22]

      [22] Samoson A, Lippmaa E, Pines A. Mol Phys, 1988, 65: 1013

    23. [23]

      [23] Mueller K T, Sun B Q, Chingas G C, Zwanziger J W, Terao T, Pines A. J Magn Reson, 1990, 86: 470

    24. [24]

      [24] Chmelka B F, Mueller K T, Pines A, Stebbins J, Wu Y, Zwanziger J W. Nature, 1989, 339:42

    25. [25]

      [25] Wu Y, Sun B Q, Pines A, Samoson A, Lippmaa E. J Magn Reson, 1990, 89: 297

    26. [26]

      [26] Frydman L, Harwood J S. J Am Chem Soc, 1995, 117: 5367

    27. [27]

      [27] Drobny G, Pines A, Sinton S, Weitekamp D P, Wemmer D. Faraday Symp Chem Soc, 1979, 13: 49

    28. [28]

      [28] Madhu P K, Goldbourt A, Frydman L, Vega S. Chem Phys Lett, 1999, 307: 41

    29. [29]

      [29] Iuga D, Kentgens A P M. J Magn Reson, 2002, 158: 65

    30. [30]

      [30] Siegel R, Nakashima T T, Wasylishen R E. Chem Phys Lett, 2006, 421: 529

    31. [31]

      [31] Gan Z H. J Am Chem Soc, 2000, 122: 3242

    32. [32]

      [32] Gullion T, Schaefer J. J Magn Reson, 1989, 81: 196

    33. [33]

      [33] Grey C P, Eijkelenboom A P M, Veeman W S. Solid State Nucl Magn, 1995, 4: 113

    34. [34]

      [34] Grey C P, Vega A J. J Am Chem Soc, 1995, 117: 8232

    35. [35]

      [35] Gullion T. Chem Phys Lett, 1995, 246: 325

    36. [36]

      [36] Gan Z H. Chem Commun, 2006: 4712

    37. [37]

      [37] Chen L, Wang Q, Hu B W, Lafon O, Trebosc J, Deng F, Amoureux J P. Phys Chem Chem Phys, 2010, 12: 9395

    38. [38]

      [38] Chen L, Lu X Y, Wang Q, Lafon O, Trebosc J, Deng F, Amoureux J P. J Magn Reson, 2010, 206: 269

    39. [39]

      [39] Tycko R, Dabbagh G. Chem Phys Lett, 1990, 173: 461

    40. [40]

      [40] Bennett A E, Ok J H, Griffin R G, Vega S. J Chem Phys, 1992, 96: 8624

    41. [41]

      [41] Raleigh D P, Levitt M H, Griffin R G. Chem Phys Lett, 1988, 146: 71

    42. [42]

      [42] Rienstra C M, Hatcher M E, Mueller L J, Sun B Q, Fesik S W, Griffin R G. J Am Chem Soc, 1998, 120: 10602

    43. [43]

      [43] Hohwy M, Jakobsen H J, Eden M, Levitt M H, Nielsen N C. J Chem Phys, 1998, 108: 2686

    44. [44]

      [44] Brinkmann A, Levitt M H. J Chem Phys, 2001, 115: 357

    45. [45]

      [45] Brinkmann A, Eden M, Levitt M H. J Chem Phys, 2000, 112: 8539

    46. [46]

      [46] Carravetta M, Eden M, Zhao X, Brinkmann A, Levitt M H. Chem Phys Lett, 2000, 321: 205

    47. [47]

      [47] Levitt M H. J Chem Phys, 2008, 128: 052250/1

    48. [48]

      [48] Jiang Y J, Huang J, Dai W L, Hunger M. Solid State Nucl Magn Re-son, 2011, 39: 116

    49. [49]

      [49] Hunger M. In: Chester A W, Derouanne E G eds.Zeolite Characterization and Catalysis-A Tutorial. Chap 2.Berlin:Springer-Verlag, 2009. 65-106

    50. [50]

      [50] Wang J, Huang W X, Wang Y F, Liu D Y. Chin J Magn Reson (王京, 黄蔚霞, 王永峰, 刘冬云. 波谱学杂志), 2004, 21: 527

    51. [51]

      [51] Engelhardt G, Michel D. High-Resolution Solid-State NMR of Silicates and Zeolites.New York: John Wiley & Son, 1987

    52. [52]

      [52] Koller H, Weib M. Top Curr Chem, 2012, 306: 189

    53. [53]

      [53] Dogan F, Hammond K D, Tompsett G A, Huo H, Conner W C Jr, Auerbach S M, Grey C P. J Am Chem Soc, 2009, 131: 11062

    54. [54]

      [54] Hammond K D, Dogan F, Tompsett G A, Agarwal V, Conner W C, Grey C P, Auerbach S M. J Am Chem Soc, 2008, 130: 14912

    55. [55]

      [55] Hammond K D, Gharibeh M, Tompsett G A, Dogan F, Brown A V, Grey C P, Auerbach S M, Conner W C. Chem Mater, 2010, 22: 130

    56. [56]

      [56] Fyfe C A, Feng Y, Grondey H, Kokotailo G T, Gies H. Chem Rev, 1991, 91: 1525

    57. [57]

      [57] Fyfe C A, Feng Y, Gies H, Grondey H, Kokotailo G T. J Am Chem Soc, 1990, 112: 3264

    58. [58]

      [58] Jeener J, Meier B H, Bachmann P, Ernst R R. J Chem Phys, 979, 71: 4546

    59. [59]

      [59] Nakai T, McDowell C A. Mol Phys, 1993, 79: 965

    60. [60]

      [60] Fyfe C A, Feng Y, Grondey H. Microporous Mater, 1993, 1: 401

    61. [61]

      [61] Fyfe C A, Brouwer D H. J Am Chem Soc, 2006, 128: 11860

    62. [62]

      [62] Fyfe C A, Diaz A C, Grondey H, Lewis A R, Förster H. J Am Chem Soc, 2005, 127: 7543

    63. [63]

      [63] Brouwer D H, Kristiansen P E, Fyfe C A, Levitt M H. J Am Chem Soc, 2005, 127: 542

    64. [64]

      [64] Brouwer D H, Enright G D. J Am Chem Soc, 2008, 130: 3095

    65. [65]

      [65] Freude D, Ernst H, Wolf I. Solid State Nucl Magn, 1994, 3: 271

    66. [66]

      [66] Hunger M, Horvath T. Ber Bunsen-Ges Phys Chem, 1995, 99: 1316

    67. [67]

      [67] Wouters B H, Chen T H, Grobet P J. J Phys Chem B, 2001, 105: 1135

    68. [68]

      [68] Wouters B H, Chen T H, Grobet P J. J Am Chem Soc, 1998, 120: 11419

    69. [69]

      [69] Kunwar A C, Turner G L, Oldfield E. J Magn Reson, 1986, 69: 124

    70. [70]

      [70] Jiao J, Altwasser S, Wang W, Weitkamp J, Hunger M. J Phys Chem B, 2004, 108: 14305

    71. [71]

      [71] Kentgens A P M, Iuga D, Kalwei M, Koller H. J Am Chem Soc, 2001, 123: 2925

    72. [72]

      [72] Peng L M, Guo X F, Ding W P. Chin J Magn Reson (彭路明, 郭学锋, 丁维平. 波谱学杂志), 2009, 26: 173

    73. [73]

      [73] Timken H K C, Turner G L, Gilson J P, Welsh L B, Oldfield E. J Am Chem Soc, 1986, 108: 7231

    74. [74]

      [74] Timken H K C, Janes N, Turner G L, Lambert S L, Welsh L B, Old-field E. J Am Chem Soc, 1986, 108: 7236

    75. [75]

      [75] Ashbrook S E, Smith M E. Chem Soc Rev, 2006, 35: 718

    76. [76]

      [76] Bull L M, Bussemer B, Anupõld T, Reinhold A, Samoson A, Sauer J, Cheetham A K, Dupree R. J Am Chem Soc, 2000, 122: 4948

    77. [77]

      [77] Pingel U T, Amoureux J P, Anupold T, Bauer F, Ernst H, Fernandez C, Freude D, Samoson A. Chem Phys Lett, 1998, 294: 345

    78. [78]

      [78] Bull L M, Cheetham A K, Anupold T, Reinhold A, Samoson A, Sauer J, Bussemer B, Lee Y, Gann S, Shore J, Pines A, Dupree R. J Am Chem Soc, 1998, 120: 3510

    79. [79]

      [79] Freude D, Loeser T, Michel D, Pingel U, Prochnow D. Solid State Nucl Magn, 2001, 20: 46

    80. [80]

      [80] Loeser T, Freude D, Mabande G T P, Schwieger W. Chem Phys Lett, 2003, 370: 32

    81. [81]

      [81] Zhao P D, Neuhoff P S, Stebbins J F. Chem Phys Lett, 2001, 344: 325

    82. [82]

      [82] Stebbins J F, Zhao P D, Lee S K, Cheng X. Am Mineral, 1999, 84: 1680

    83. [83]

      [83] Peng L M, Liu Y, Kim N, Readman J E, Grey C P. Nat Mater, 2005, 4: 216

    84. [84]

      [84] Peng L M, Huo H, Liu Y, Grey C P. J Am Chem Soc, 2007, 129: 335

    85. [85]

      [85] Peng L M, Huo H, Gan Z H, Grey C P. Microporous Mesoporous Mater, 2008, 109: 156

    86. [86]

      [86] Koller H, Fild C, Lobo R F. Microporous Mesoporous Mater, 2005, 79: 215

    87. [87]

      [87] Koller H. In:Occelli M Ed.Fluid Catalytic Cracking VI: Preparation and Characterization of Catalysts.Vol. 149. Amsterdam:Elsevier,2004. 105

    88. [88]

      [88] Reddy Marthala V R, Wang W, Jiao J, Jiang Y J, Huang J, Hunger M. Microporous Mesoporous Mater, 2007, 99: 91

    89. [89]

      [89] Zhang W P, Xu S T, Han X W, Bao X H. Chem Soc Rev, 2012, 41:192

    90. [90]

      [90] Pfeifer H, Ernst H. Ann Rep NMR Spectro, 1993, 5: 28

    91. [91]

      [91] Hunger M. Catal Rev-Sci Eng, 1997, 39: 345

    92. [92]

      [92] Freude D, Hunger M, Pfeifer H, Schwieger W. Chem Phys Lett, 1986, 128: 62

    93. [93]

      [93] Deng F, Yue Y, Ye C H. Solod State Nucl Magn, 1998, 10: 151

    94. [94]

      [94] Liu X Y, Ding Sh F, Pan H F, Wang J. Chin J Magn Reson (刘兴玉, 丁淑芳, 潘惠芳,王京. 波谱学杂志), 2004, 21: 237

    95. [95]

      [95] Li S H, Zheng A M, Su Y C, Zhang H L, Chen L, Yang J, Ye C H, Deng F. J Am Chem Soc, 2007, 129: 11161

    96. [96]

      [96] Yu Z W, Zheng A M, Wang Q, Deng F. Chem J Chin Univ (喻志武, 郑安民, 王强, 邓风. 高等学校化学学报), 2011, 32: 47l

    97. [97]

      [97] Wang Q, Hu B, Lafon O, Trébosc J, Deng F, Amoureux J P. J Magn Reson, 2009, 200: 251.

    98. [98]

      [98] Yu Z W, Zheng A M, Wang Q, Chen L, Xu J, Amoureux J P, Deng F. Angew Chem, Int Ed, 2010, 49: 8657

    99. [99]

      [99] Xu M C, Arnold A, Buchholz A, Wang W, Hunger M. J Phys Chem B, 2002, 106: 12140

    100. [100]

      [100] Zheng A M, Zhang H L, Chen L, Yue Y, Ye Ch, Deng F. J Phys Chem B, 2007, 111: 3085

    101. [101]

      [101] Filek U, Bressel A, Sulikowski B, Hunger M. J Phys Chem C, 2008, 112: 19470

    102. [102]

      [102] Yang J, Janik M J, Ma D, Zheng A M, Zhang M G, Neurock M, Davis R J, Ye C H, Deng F. J Am Chem Soc, 2005, 127: 18274

    103. [103]

      [103] Hawkes G E, Herwig K, Roberts J D. J Org Chem, 1974, 39: 1017

    104. [104]

      [104] Olah G A, White A M. J Am Chem Soc, 1969, 91: 5801

    105. [105]

      [105] Xu T, Torres P D, Beck L W, Haw J F. J Am Chem Soc, 1995, 117: 8027

    106. [106]

      [106] Haw J F, Nicholas J B, Xu T, Beck L W, Ferguson D B. Acc Chem Res, 1996, 29: 259

    107. [107]

      [107] Barich D H, Nicholas J B, Xu T, Haw J F. J Am Chem Soc, 1998, 120: 12342

    108. [108]

      [108] Hu B, Gay I D. J Phys Chem B, 2001, 105: 217

    109. [109]

      [109] Haw J F, Zhang J, Shimizu K, Venkatraman T N, Luigi D P, Song W, Barich D H, Nicholas J B. J Am Chem Soc, 2000, 122: 12561

    110. [110]

      [110] Kao H M, Grey C P. Chem Phys Lett, 1996, 259: 459

  • 加载中
    1. [1]

      Heng Zhang . Determination of All Rate Constants in the Enzyme Catalyzed Reactions Based on Michaelis-Menten Mechanism. University Chemistry, 2024, 39(4): 395-400. doi: 10.3866/PKU.DXHX202310047

    2. [2]

      Xingyang LITianju LIUYang GAODandan ZHANGYong ZHOUMeng PAN . A superior methanol-to-propylene catalyst: Construction via synergistic regulation of pore structure and acidic property of high-silica ZSM-5 zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1279-1289. doi: 10.11862/CJIC.20240026

    3. [3]

      Jinkang Jin Yidian Sheng Ping Lu Zhan Lu . Introducing a Website for Learning Nuclear Magnetic Resonance (NMR) Spectrum Analysis. University Chemistry, 2024, 39(11): 388-396. doi: 10.12461/PKU.DXHX202403054

    4. [4]

      Haolin Zhan Qiyuan Fang Jiawei Liu Xiaoqi Shi Xinyu Chen Yuqing Huang Zhong Chen . Noise Reduction of Nuclear Magnetic Resonance Spectroscopy Using Lightweight Deep Neural Networ. Acta Physico-Chimica Sinica, 2025, 41(2): 100017-. doi: 10.3866/PKU.WHXB202310045

    5. [5]

      Haiyang Jin Yonghai Hui Yongfei Zhang Lijun Gao Yun Wang . Application and Exploration of Nuclear Magnetic Resonance Spectrometer in Undergraduate Basic Laboratory Teaching. University Chemistry, 2025, 40(3): 245-250. doi: 10.12461/PKU.DXHX202406022

    6. [6]

      Xueting Cao Shuangshuang Cha Ming Gong . 电催化反应中的界面双电层:理论、表征与应用. Acta Physico-Chimica Sinica, 2025, 41(5): 100041-. doi: 10.1016/j.actphy.2024.100041

    7. [7]

      Zhenhua Wang Haoyang Feng Xiaoyang Shao Wenru Fan . Vitamins in Solid Propellants: Controlled Synthesis of Neutral Macromolecular Bonding Agents. University Chemistry, 2025, 40(4): 1-9. doi: 10.3866/PKU.DXHX202401007

    8. [8]

      Ke QIAOYanlin LIShengli HUANGGuoyu YANG . Advancements in asymmetric catalysis employing chiral iridium (ruthenium) complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2091-2104. doi: 10.11862/CJIC.20240265

    9. [9]

      Fangxuan Liu Ziyan Liu Guowei Zhou Tingting Gao Wenyu Liu Bin Sun . Hollow structured photocatalysts. Acta Physico-Chimica Sinica, 2025, 41(7): 100071-. doi: 10.1016/j.actphy.2025.100071

    10. [10]

      Jiajie Li Xiaocong Ma Jufang Zheng Qiang Wan Xiaoshun Zhou Yahao Wang . Recent Advances in In-Situ Raman Spectroscopy for Investigating Electrocatalytic Organic Reaction Mechanisms. University Chemistry, 2025, 40(4): 261-276. doi: 10.12461/PKU.DXHX202406117

    11. [11]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    12. [12]

      Haodong JINQingqing LIUChaoyang SHIDanyang WEIJie YUXuhui XUMingli XU . NiCu/ZnO heterostructure photothermal electrocatalyst for efficient hydrogen evolution reaction. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1068-1082. doi: 10.11862/CJIC.20250048

    13. [13]

      Hao Wu Zhen Liu Dachang Bai1H NMR Spectrum of Amide Compounds. University Chemistry, 2024, 39(3): 231-238. doi: 10.3866/PKU.DXHX202309020

    14. [14]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    15. [15]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    16. [16]

      Xuejie Wang Guoqing Cui Congkai Wang Yang Yang Guiyuan Jiang Chunming Xu . 碳基催化剂催化有机液体氢载体脱氢研究进展. Acta Physico-Chimica Sinica, 2025, 41(5): 100044-. doi: 10.1016/j.actphy.2024.100044

    17. [17]

      Hong Lu Yidie Zhai Xingxing Cheng Yujia Gao Qing Wei Hao Wei . Advancements and Expansions in the Proline-Catalyzed Asymmetric Aldol Reaction. University Chemistry, 2024, 39(5): 154-162. doi: 10.3866/PKU.DXHX202310074

    18. [18]

      Aili Feng Xin Lu Peng Liu Dongju Zhang . Computational Chemistry Study of Acid-Catalyzed Esterification Reactions between Carboxylic Acids and Alcohols. University Chemistry, 2025, 40(3): 92-99. doi: 10.12461/PKU.DXHX202405072

    19. [19]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    20. [20]

      Juntao Yan Liang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-. doi: 10.3866/PKU.WHXB202312024

Metrics
  • PDF Downloads(0)
  • Abstract views(346)
  • HTML views(19)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return