Citation: SUN Xiaoyan, WANG Rui, SU Dangsheng. Research progress in metal-free carbon-based catalysts[J]. Chinese Journal of Catalysis, ;2013, 34(3): 508-523. doi: 10.1016/S1872-2067(11)60515-9 shu

Research progress in metal-free carbon-based catalysts

  • Corresponding author: SU Dangsheng, 
  • Received Date: 10 November 2012
    Available Online: 6 January 2013

    Fund Project: 国家自然科学基金(21133010, 21103203, 50921004) (21133010, 21103203, 50921004) 国家重大科学问题导向项目(973计划, 2011CBA00504) (973计划, 2011CBA00504)

  • Metal-free carbon-based catalysts are one of the most active research directions in nanomaterials and catalysis. The advantages that nanocarbon catalysts have over metal catalysts include high efficiency, environmental compatibility, low energy consumption, and corrosion resistance. Nanocarbon can efficiently catalyze alkane conversion, chemical synthesis, energy catalysis and other heterogeneous catalytic processes. This review highlights recent progress in the development of metal-free carbon-based catalysts, including understanding their surface properties, catalytic performance and reaction mechanism and macroscopic architecture. The state-of-the-art and future challenges of metal-free heterogeneous catalysis are also discussed.
  • 加载中
    1. [1]

      [1] Jiang H F, Wang Y G, Liu H L, Liu P. Chin J Org Chem (江焕峰, 王玉刚, 刘海灵, 刘鹏. 有机化学), 2004, 24: 1513

    2. [2]

      [2] Yang G, Ma Y, Xu J. J Am Chem Soc, 2004, 126: 10542

    3. [3]

      [3] Chen D J, Wang Y T, Klankermayer J. Angew Chem, Int Ed, 2010, 49: 9475

    4. [4]

      [4] Su D S, Zhang J, Frank B, Thomas A, Wang X C, Paraknowitsch J, Schlögl R. ChemSusChem, 2010, 3: 169

    5. [5]

      [5] Figueiredo J L, Pereira M F R. Catal Today, 2010, 150: 2

    6. [6]

      [6] Mestl G, Maksimova N I, Keller N, Roddatis V V, Schlögl R. Angew Chem, Int Ed, 2001, 40: 2066

    7. [7]

      [7] Keller N, Maksimova N I, Roddatis V V, Schur M, Mes[8] Zhao T J, Sun W Z, Gu X Y, Rönning M, Chen D, Dai Y C, Yuan W K, Holmen A. Appl Catal A, 2007, 323: 135

    8. [8]

      [9] Delgado J J, Su D S, Rebmann G, Keller N, Gajovic A, Schlögl R. J Catal, 2006, 244: 126

    9. [9]

      [10] Li P, Li T, Zhou J H, Sui Z J, Dai Y C, Yuan W K, Chen D. Microporous Mesoporous Mater, 2006, 95: 1

    10. [10]

      [11] Delgado J J, Chen X W, Su D S, Hamid S B A, Schlögl R. J Nanosci Nanotech, 2007, 7: 3495

    11. [11]

      [12] Su D S, Maksimova N, Delgado J J, Keller N, Mestl G, Ledoux M J, Schlögl R. Catal Today, 2005, 102-103: 110

    12. [12]

      [13] Yu D S, Nagelli E, Du F, Dai L M. J Phys Chem Lett, 2010, 1: 2165

    13. [13]

      [14] Frank B, Rinaldi A, Blume R, Schlögl R, Su D S. Chem Mater, 2010, 22: 4462

    14. [14]

      [15] Zhang J, Liu X, Blume R, Zhang A H, Schlögl R, Su D S. Science, 2008, 322: 73

    15. [15]

      [16] Frank B, Zhang J, Blume R, Schlögl R, Su D S. Angew Chem, Int Ed, 2009, 48: 6913

    16. [16]

      [17] Pereira M F R, Órfão J J M, Figueiredo J L. Appl Catal A, 1999, 184: 153

    17. [17]

      [18] Maciá-Agulló J A, Cazorla-Amorós D, Linares-Solano A, Wild U, Su D S, Schlögl R. Catal Today, 2005, 102-103: 248

    18. [18]

      [19] Zhang J, Su D S, Zhang A H, Wang D, Schlögl R, Hébert C. Angew Chem, Int Ed, 2007, 46: 7319

    19. [19]

      [20] Macia-Agullo J A, Cazorla-Amoros D, Linares-Solano A, Wild U, Su D S, Schlögl R. 1st International Symposium on Carbon for Catalysis (Carbo-Cat-1). Switzerland: Elsevier, 2004. 248

    20. [20]

      [21] Silva I F, Vital J, Ramos A M, Valente H, do Rego A M B, Reis M J. Carbon, 1998, 36: 1159

    21. [21]

      [22] Liu X, Su D S, Schlögl R. Carbon, 2008, 46: 547

    22. [22]

      [23] Frank B, Morassutto M, Schomacker R, Schlögl R, Su D S. ChemCatChem, 2010, 2: 644

    23. [23]

      [24] Muradov N. Catal Commun, 2001, 2: 89

    24. [24]

      [25] Muradov N, Smith F, T-Raissi A. Catal Today, 2005, 102: 225

    25. [25]

      [26] Huang L P, Santiso E E, Nardelli M B, Gubbins K E. J Chem Phys, 2008, 128: 7

    26. [26]

      [27] Lee S Y, Kwak J H, Han G Y, Lee T J, Yoon K J. Carbon, 2008, 46: 342

    27. [27]

      [28] Xie H, Wu Z L, Overbury S H, Liang C D, Schwartz V. J Catal, 2009, 267: 158

    28. [28]

      [29] Zhang J, Su D S, Blume R, Schlögl R, Wang R, Yang X G, Gajovic A. Angew Chem, Int Ed, 2010, 49: 8640

    29. [29]

      [30] Liu X, Frank B, Zhang W, Cotter T P, Schlögl R, Su D S. Angew Chem, Int Ed, 2011, 50: 3318

    30. [30]

      [31] Frank B, Blume R, Rinaldi A, Trunschke A, Schlögl R. Angew Chem, Int Ed, 2011, 50: 10226

    31. [31]

      [32] Besson M, Blackburn A, Gallezot P, Kozynchenko O, Pigamo A, Tennison S. Top Catal, 2000, 13: 253

    32. [32]

      [33] Kuang Y B, Islam N M, Nabae Y, Hayakawa T, Kakimoto M. Angew Chem, Int Ed, 2010, 49: 436

    33. [33]

      [34] Kang Z H, Wang E B, Mao B D, Su Z M, Gao L, Niu L, Shan H Y, Xu L. Appl Catal A, 2006, 299: 212

    34. [34]

      [35] Begin D, Ulrich G, Amadou J, Su D S, Pham-Huu C, Ziessel R. J Mol Catal A, 2009, 302: 119

    35. [35]

      [36] Hara M, Yoshida T, Takagaki A, Takata T, Kondo J N, Hayashi S, Dome K. Angew Chem, Int Ed, 2004, 43: 2955

    36. [36]

      [37] Peng F, Zhang L, Wang H J, Lü P, Yu H. Carbon, 2005, 43: 2397

    37. [37]

      [38] Yu H, Jin Y G, Li Z L, Peng F, Wang H J. J Solid State Chem, 2008, 181: 432

    38. [38]

      [39] Yu H, Peng F, Tan J, Hu X W, Wang H J, Yang J, Zheng W X. Angew Chem, Int Ed, 2011, 50: 3978

    39. [39]

      [40] Yang S X, Li X, Zhu W P, Wang J B, Descorme C. Carbon, 2008, 46: 445

    40. [40]

      [41] Aguilar C, Garcia R, Soto-Garrido G, Arriagada R. Appl Catal B, 2003, 46: 229

    41. [41]

      [42] Gao Y J, Ma D, Wang C L, Guan J, Bao X H. Chem Commun, 2011, 47: 2432

    42. [42]

      [43] Wang X Q, Liu R, Waje M M, Chen Z W, Yan Y S, Bozhilov K N, Feng P Y. Chem Mater, 2007, 19: 2395

    43. [43]

      [44] Villa A, Tessonnier J P, Majoulet O, Su D S, Schlögl R. Chem Commun, 2009: 4405

    44. [44]

      [45] Yuan X L.[PhD Dissertation]. Changchun: Jilin Univ (袁晓玲.[博士学位论文]. 长春: 吉林大学), 2012

    45. [45]

      [46] Yuan X L, Zhang M, Chen X D, An N H, Liu G, Liu Y, Zhang W X, Yan W F, Jia M J. Appl Catal A, 2012, 439-440: 149

    46. [46]

      [47] Kan-nari N, Okamura S, Fujita S, Ozaki J, Arai M. Adv Synth Catal, 2010, 352: 1476

    47. [47]

      [48] Dreyer D R, Jia H P, Todd A D, Geng J X, Bielawski C W. Org Biomol Chem, 2011, 9: 7292

    48. [48]

      [49] Jia H P, Dreyer D R, Bielawski C W. Tetrahedron, 2011, 67: 4431

    49. [49]

      [50] Kumar A V, Rao K R. Tetrahedron Lett, 2011, 52: 5188

    50. [50]

      [51] Verma S, Mungse H P, Kumar N, Choudhary S, Jain S L, Sain B, Khatri O P. Chem Commun, 2011, 47: 12673

    51. [51]

      [52] Chauhan S M S, Mishra S. Molecules, 2011, 16: 7256

    52. [52]

      [53] Dreyer D R, Jarvis K A, Ferreira P J, Bielawski C W. Polym Chem, 2012, 3: 757

    53. [53]

      [54] Dreyer D R, Bielawski C W. Chem Sci, 2011, 2: 1233

    54. [54]

      [55] Dreyer D R, Jia H P, Bielawski C W. Angew Chem, Int Ed, 2010, 49: 6813

    55. [55]

      [56] Su C L, Acik M, Takai K, Lu J, Hao S J, Zheng Y, Wu P P, Bao Q L, Enoki T, Chabal Y J, Loh K P. Nature Commun, 2012, 3: 1298

    56. [56]

      [57] Goettmann F, Fischer A, Antonietti M, Thomas A. Angew Chem, Int Ed, 2006, 45: 4467

    57. [57]

      [58] Goettmann F, Fischer A, Antonietti M, Thomas A. Chem Commun, 2006: 4530

    58. [58]

      [59] Goettmann F, Fischer A, Antonietti M, Thomas A. New J Chem, 2007, 31: 1455

    59. [59]

      [60] Su F Z, Antoniettia M, Wang X C. Catal Sci Technol, 2012, 2: 1005

    60. [60]

      [61] Wang Y, Wang X C, Antonietti M. Angew Chem, Int Ed, 2012, 51: 68

    61. [61]

      [62] Wang Y, Zhang J S, Wang X C, Antonietti M, Li H R. Angew Chem, Int Ed, 2010, 49: 3356

    62. [62]

      [63] Wang Y, Li H R, Yao J, Wang X C, Antonietti M. Chem Sci, 2011, 2: 446

    63. [63]

      [64] Shao Y, Sui J, Yin G, Gao Y. Appl Catal B, 2008, 79: 89

    64. [64]

      [65] Gong K P, Du F, Xia Z H, Durstock M, Dai L M. Science, 2009, 323: 760

    65. [65]

      [66] Ewels C P, Glerup M J, Nanosci J. Nanotechnol, 2005, 5: 1345

    66. [66]

      [67] Tang Y, Allen B L, Kauffman D R, Star A. J Am Chem Soc, 2009, 131: 13200

    67. [67]

      [68] Biddinger E J, von Deak D, Ozkan U S. Top Catal, 2009, 52: 1566

    68. [68]

      [69] Matter P H, Ozkan U S. Catal Lett, 2006, 109: 115

    69. [69]

      [70] Liu R L,Wu D Q, Feng X L, Müllen K. Angew Chem, Int Ed, 2010, 49: 2565

    70. [70]

      [71] Dai L M, Chang D W, Baek J B, Lu W. Small, 2012, 8: 1130

    71. [71]

      [72] Wang H, Cote R, Faubert G, Guay D, Dodelet J P. J Phys Chem B, 1999, 103: 2042

    72. [72]

      [73] Matter P H, Zhang L, Ozkan U S. J Catal, 2006, 239: 83

    73. [73]

      [74] Matter P H, Ozkan U S. Catal Lett, 2006, 109: 115

    74. [74]

      [75] Qu L, Liu Y, Baek J B, Dai L. ACS Nano, 2010, 4: 1321

    75. [75]

      [76] Strelko V V, Kartel N T, Dukhno I N, Kuts V S, Clarkson R B, Odintsov B M. Surf Sci, 2004, 548: 281

    76. [76]

      [77] Stohr B, Boehm H P, Schlögl R. Carbon, 1991, 29: 707

    77. [77]

      [78] Jarrah N A, Li F, Ommen J, Lefferts L. J Mater Chem, 2005, 15: 1946

    78. [78]

      [79] Yang S B, Feng X L, Wang X C, Mullen K. Angew Chem, Int Ed, 2011, 50: 5339

    79. [79]

      [80] Ozaki J, Tanifuji S, Furuichi A, Yabutsuka K. Electrochim Acta, 2010, 55: 1864

    80. [80]

      [81] Wang X C, Maeda K, Thomas A, Takanabe K, Xin G, Carlsson J M, Domen K, Antonietti M. Nat Mater, 2009, 8: 76

    81. [81]

      [82] Wang Y, Wang X C, Antonietti M. Angew Chem, Int Ed, 2012, 51: 68

    82. [82]

      [83] Zhang J S, Chen X F, Takanabe K, Maeda K, Domen K, Epping J D, Fu X Z, Antonietti M, Wang X C. Angew Chem, Int Ed, 2010, 49: 441

    83. [83]

      [84] Yadav R K, Baeg J O, Oh G H, Park N J, Kong K J, Kim J, Hwang D W, Biswas S K. J Am Chem Soc, 2012, 134: 11455

    84. [84]

      [85] Jarrah N A, Li F, Ommen J, Lefferts L. J Mater Chem, 2005, 15: 1946

    85. [85]

      [86] Su D S, Chen X W, Liu X, Delgado J J, Schlögl R. Adv Mater, 2008, 20: 3597

    86. [86]

      [87] Rinaldi A, Zhang J, Mizera J, Girgsdies F, Wang N, Hamid S, Schlögl R, Su D S. Chem Commun, 2008: 6528

    87. [87]

      [88] García-Bordejé E, Kvande I, Chen D, Rönning M. Carbon, 2007, 45: 1828

    88. [88]

      [89] Vanhaecke E, Ivanova S, Deneuve A, Ersen O, Edouard D, Wine G, Nguyen P, Pham C, Pham-Huu C. J Mater Chem, 2008, 18: 4654

    89. [89]

      [90] Liu R, Mahurin S M, Li C, Unocic R R, Idrobo J C, Gao H J, Pennycook S J, Dai S. Angew Chem, Int Ed, 2011, 50: 6799

    90. [90]

      [91] Zhang J, Wang R, Liu E Z, Gao X F, Sun Z H, Xiao F S, Frank G, Su D S. Angew Chem, Int Ed, 2012, 51: 7581

    91. [91]

      [92] Chizari K, Deneuve A, Ersen O, Florea I, Liu Y, Edouard D, Janowska I, Begin D, Pham-Huu C. ChemSusChem, 2012, 5: 102

  • 加载中
    1. [1]

      Wenjiang LIPingli GUANRui YUYuansheng CHENGXianwen WEI . C60-MoP-C nanoflowers van der Waals heterojunctions and its electrocatalytic hydrogen evolution performance. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 771-781. doi: 10.11862/CJIC.20230289

    2. [2]

      Huiwei DingBo PengZhihao WangQiaofeng Han . Advances in Metal or Nonmetal Modification of Bismuth-Based Photocatalysts. Acta Physico-Chimica Sinica, 2024, 40(4): 2305048-0. doi: 10.3866/PKU.WHXB202305048

    3. [3]

      Jinyi Sun Lin Ma Yanjie Xi Jing Wang . Preparation and Electrocatalytic Nitrogen Reduction Performance Study of Vanadium Nitride@Nitrogen-Doped Carbon Composite Nanomaterials: A Recommended Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(4): 184-191. doi: 10.3866/PKU.DXHX202310094

    4. [4]

      Xiangyu CAOJiaying ZHANGYun FENGLinkun SHENXiuling ZHANGJuanzhi YAN . Synthesis and electrochemical properties of bimetallic-doped porous carbon cathode material. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 509-520. doi: 10.11862/CJIC.20240270

    5. [5]

      Guojie Xu Fang Yu Yunxia Wang Meng Sun . Introduction to Metal-Catalyzed β-Carbon Elimination Reaction of Cyclopropenones. University Chemistry, 2024, 39(8): 169-173. doi: 10.3866/PKU.DXHX202401060

    6. [6]

      Guimin ZHANGWenjuan MAWenqiang DINGZhengyi FU . Synthesis and catalytic properties of hollow AgPd bimetallic nanospheres. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 963-971. doi: 10.11862/CJIC.20230293

    7. [7]

      Xue XiaoJiachun LiXiangtong MengJieshan Qiu . Sulfur-Doped Carbon-Coated Fe0.95S1.05 Nanospheres as Anodes for High-Performance Sodium Storage. Acta Physico-Chimica Sinica, 2024, 40(6): 2307006-0. doi: 10.3866/PKU.WHXB202307006

    8. [8]

      Huimin LiuKezhi LiXin ZhangXuemin YinQiangang FuHejun Li . SiC Nanomaterials and Their Derived Carbons for High-Performance Supercapacitors. Acta Physico-Chimica Sinica, 2024, 40(2): 2304026-0. doi: 10.3866/PKU.WHXB202304026

    9. [9]

      Lutian ZhaoYangge GuoLiuxuan LuoXiaohui YanShuiyun ShenJunliang Zhang . Electrochemical Synthesis for Metallic Nanocrystal Electrocatalysts: Principle, Application and Challenge. Acta Physico-Chimica Sinica, 2024, 40(7): 2306029-0. doi: 10.3866/PKU.WHXB202306029

    10. [10]

      Wuxin BaiQianqian ZhouZhenjie LuYe SongYongsheng Fu . Co-Ni Bimetallic Zeolitic Imidazolate Frameworks Supported on Carbon Cloth as Free-Standing Electrode for Highly Efficient Oxygen Evolution. Acta Physico-Chimica Sinica, 2024, 40(3): 2305041-0. doi: 10.3866/PKU.WHXB202305041

    11. [11]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

    12. [12]

      Haiyuan Wang Yiming Tang Haoran Guo Guohui Chen Yajing Sun Chao Zhao Zhen Zhang . Comprehensive Chemistry Experimental Teaching Design Based on the Integration of Science and Education: Preparation and Catalytic Properties of Silver Nanomaterials. University Chemistry, 2024, 39(10): 219-228. doi: 10.12461/PKU.DXHX202404067

    13. [13]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    14. [14]

      Bizhu ShaoHuijun DongYunnan GongJianhua MeiFengshi CaiJinbiao LiuDichang ZhongTongbu Lu . Metal-Organic Framework-Derived Nickel Nanoparticles for Efficient CO2 Electroreduction in Wide Potential Windows. Acta Physico-Chimica Sinica, 2024, 40(4): 2305026-0. doi: 10.3866/PKU.WHXB202305026

    15. [15]

      Xinlong XUChunxue JINGYuzhen CHEN . Bimetallic MOF-74 and derivatives: Fabrication and efficient electrocatalytic biomass conversion. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1545-1554. doi: 10.11862/CJIC.20250046

    16. [16]

      Junli Liu . Practice and Exploration of Research-Oriented Classroom Teaching in the Integration of Science and Education: a Case Study on the Synthesis of Sub-Nanometer Metal Oxide Materials and Their Application in Battery Energy Storage. University Chemistry, 2024, 39(10): 249-254. doi: 10.12461/PKU.DXHX202404023

    17. [17]

      Wei SunYongjing WangKun XiangSaishuai BaiHaitao WangJing ZouArramelJizhou Jiang . CoP Decorated on Ti3C2Tx MXene Nanocomposites as Robust Electrocatalyst for Hydrogen Evolution Reaction. Acta Physico-Chimica Sinica, 2024, 40(8): 2308015-0. doi: 10.3866/PKU.WHXB202308015

    18. [18]

      Yaping ZHANGTongchen WUYun ZHENGBizhou LIN . Z-scheme heterojunction β-Bi2O3 pillared CoAl layered double hydroxide nanohybrid: Fabrication and photocatalytic degradation property. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 531-539. doi: 10.11862/CJIC.20240256

    19. [19]

      Hui-Ying ChenHao-Lin ZhuPei-Qin LiaoXiao-Ming Chen . Integration of Ru(Ⅱ)-Bipyridyl and Zinc(Ⅱ)-Porphyrin Moieties in a Metal-Organic Framework for Efficient Overall CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2306046-0. doi: 10.3866/PKU.WHXB202306046

    20. [20]

      Tingting XUWenjing ZHANGYongbo SONG . Research advances of atomic precision coinage metal nanoclusters in tumor therapy. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2275-2285. doi: 10.11862/CJIC.20240229

Metrics
  • PDF Downloads(0)
  • Abstract views(357)
  • HTML views(25)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return