Citation:
WANG Qingyin, KANG Wukui, ZHANG Yi, YANG Xiangui, YAO Jie, CHEN Tong, WANG Gongying. Solvent-free thermal decomposition of methylenediphenyl di(phenylcarbamate) catalyzed by nano-Cu2O[J]. Chinese Journal of Catalysis,
;2013, 34(3): 548-558.
doi:
10.1016/S1872-2067(11)60494-4
-
Methylene di(phenylisocyanate) (MDI) was prepared by thermal decomposition of methylenediphenyl di(phenylcarbamate) (MDPC) under solvent-free conditions with a nano-Cu2O catalyst. The preparation of nano-Cu2O was investigated in detail to obtain the optimal catalytic performance. The thermal decomposition reaction conditions, including reaction temperature, reaction pressure, and reaction time, were studied in the presence of nano-Cu2O. The results show that Cu2O prepared using a hydrolysis method and then calcined at 300℃ in Ar atmosphere for 2 h exhibited the optimal catalytic activity. The optimal reaction conditions were as follows: mass ratio of catalyst to MDPC 6.0 × 10-4, reaction temperature 220℃, reaction time 12 min, and reaction pressure 0.6 kPa. Under these conditions, the conversion of MDPC reached 99.8% and 86.2% MDI selectivity was achieved.
-
-
-
[1]
[1] Xu P L, Zhang Sh Q. Handbook of Polyurethane Materials. Beijing: Chem Ind Press (徐培林, 张淑琴. 聚氨酯材料手册. 北京: 化学工业出版社), 2002. 35
-
[2]
[2] Yu L M, Zheng B Sh. Chem Ind (余黎明, 郑宝山. 化学工业), 2008, 26(7): 46
-
[3]
[3] Xia M, Tang J X. J Zhuzhou Inst Technol (夏敏, 堂建新. 株洲工学院学报), 2000, 14(3): 1
-
[4]
[4] Dong Y W, Sun J M, Zhai J, Zhang Zh G, Wang J M. TianJin Chem Ind (东玉武, 孙建梅, 翟江, 张兆贵, 王景明. 天津化工), 2002, (6): 41
-
[5]
[5] Mango F D. US Patent 4 163 019. 1979
-
[6]
[6] Hammen G, Knoefel H, Friedrichs W. EP Patent 0 396 977. 1990
-
[7]
[7] Wang G Y, Chen D, Feng X L, Wang Q Y, Yao J, Wang Y, Zeng Y (王公应, 陈东, 冯秀丽, 王庆印, 姚洁, 王越, 曾毅). CN Patent 1721060. 2005
-
[8]
[8] Rosenthal R, Zajacek J G. US Patent 3 919 279. 1975
-
[9]
[9] Chen D, Liu L M, Wang Y, Yao J, Wang G Y, Li Sh X, Xue Y, Zhan J H. Chin J Catal (陈东, 刘良明, 王越, 姚洁, 王公应, 李石新, 薛援, 展江红. 催化学报), 2005, 26: 987
-
[10]
[10] Deng Y Q, Guo X G, Shi F, Zhang Q H, Ma X Y, Lu L J, Li J, Tian X, Ma Y B, Shang J P, Cui X J, Wang L G, Zhang H Z. US Patent 0 021 810. 2011
-
[11]
[11] Guan X, Li H Q, Liu H T, Guo F, Yao X X. J Beijing Univ Chem Technol (Nat Sci) (关雪, 李会泉, 刘海涛, 郭奋, 姚星星. 北京化工大学学报 (自然科学版)), 2009, 36(4): 12
-
[12]
[12] Wang J G, Guo X C, Qin Zh F, Wang G F (王建国, 郭星翠, 秦张峰, 王国富). CN Patent 101 269 342. 2008
-
[13]
[13] Wang G Y, Dai Y Sh, Wang Q Y, Liu L M, Wang Y, Yao J, Zeng Y (王公应, 戴云生, 王庆印, 刘良明, 王越, 姚洁, 曾毅). CN Patent 101 011 657. 2007
-
[14]
[14] Uriz P, Serra M, Salagre P, Castillon S, Claver C, Fernandez E. Tetrahedron Lett, 2002, 43: 1673
-
[15]
[15] Hammen G, Knofel H, Friederichs W. US Patent 5 043 471. 1991
-
[16]
[16] Zhao X Q, Wang Y J, Wang S F, Yang H J, Zhang J Y. Ind Eng Chem Res, 2002, 41: 5139
-
[17]
[17] Bosman J K P, Mangos Jostes N (博斯曼 J K P, 曼格斯乔特斯 N). CN Patent 1 406 224. 2003
-
[18]
[18] Mei G J, Shi W, Xie K F, Xia Y. Resources Environ Eng (梅光军, 师伟, 解科峰, 夏洋. 资源环境与工程), 2007, 21: 335
-
[19]
[19] Yamada Y, Yano K, Fukuzumi S. Energy Environ Sci, 2012, 5: 5356
-
[20]
[20] Zhang Z L, Che H W, Gao J J, Wang Y L, She X L, Sun J, Gunawan P, Zhong Z Y, Su F B. Catal Sci Technol, 2012, 2: 1207
-
[21]
[21] Xu Y, Wang H, Yu Y F, Tian L, Zhao W W, Zhang B. J Phys Chem C, 2011, 115: 15288
-
[22]
[22] Bai Zh H, Luo B H, Jin X H. Mining Metall Eng (柏振海, 罗兵辉, 金晓鸿. 矿业工程), 2001, 21(4): 67
-
[23]
[23] Dai Y Sh, Wang Y, Yao J, Wang Q Y, Liu L M, Wei Ch, Wang G Y. Catal Lett, 2008, 123: 307
-
[24]
[24] Ruan Ch X, Chen Ch Q, Zhang Y J, Lin X Y, Zhan Y Y, Zheng Q. Chin J Catal (阮春晓, 陈崇启, 张燕杰, 林性贻, 詹瑛瑛, 郑起. 催化学报 ), 2012, 33: 842
-
[25]
[25] Zhang Q H, Li H Q, Liu H T, Pei Y X. Chem J Chin Univ (张琴花, 李会泉, 刘海涛, 裴义霞. 高等学校化学学报), 2011, 32: 1106
-
[1]
-
-
-
[1]
Yanhui Guo , Li Wei , Zhonglin Wen , Chaorong Qi , Huanfeng Jiang . Recent Progress on Conversion of Carbon Dioxide into Carbamates. Acta Physico-Chimica Sinica, 2024, 40(4): 2307004-0. doi: 10.3866/PKU.WHXB202307004
-
[2]
Ling Liu , Haibin Wang , Genrong Qiang . Curriculum Ideological and Political Design for the Comprehensive Preparation Experiment of Ethyl Benzoate Synthesized from Benzyl Alcohol. University Chemistry, 2024, 39(2): 94-98. doi: 10.3866/PKU.DXHX202304080
-
[3]
Xiaofei Liu , He Wang , Li Tao , Weimin Ren , Xiaobing Lu , Wenzhen Zhang . Electrocarboxylation of Benzylic Phosphates and Phosphinates with Carbon Dioxide. Acta Physico-Chimica Sinica, 2024, 40(9): 2307008-0. doi: 10.3866/PKU.WHXB202307008
-
[4]
Liangzhen Hu , Li Ni , Ziyi Liu , Xiaohui Zhang , Bo Qin , Yan Xiong . A Green Chemistry Experiment on Electrochemical Synthesis of Benzophenone. University Chemistry, 2024, 39(6): 350-356. doi: 10.3866/PKU.DXHX202312001
-
[5]
Jichao XU , Ming HU , Xichang CHEN , Chunhui WANG , Leichen WANG , Lingyi ZHOU , Xing HE , Xiamin CHENG , Su JING . Construction and hydrogen peroxide-activated chemodynamic activity of ferrocene?benzoselenadiazole conjugate. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1495-1504. doi: 10.11862/CJIC.20250144
-
[6]
Qianping Li , Hua Guan , Changfeng Wan , Yonghai Song , Jianwen Jiang . 大学有机化学复习课项目式教学——以“液晶化合物4-正戊基苯甲酸-4′-正戊基苯酯的合成路线设计与产品制备”为例. University Chemistry, 2025, 40(8): 100-116. doi: 10.12461/PKU.DXHX202410070
-
[7]
Caixia Lin , Zhaojiang Shi , Yi Yu , Jianfeng Yan , Keyin Ye , Yaofeng Yuan . Ideological and Political Design for the Electrochemical Synthesis of Benzoxathiazine Dioxide Experiment. University Chemistry, 2024, 39(2): 61-66. doi: 10.3866/PKU.DXHX202309005
-
[8]
Yanglin Jiang , Mingqing Chen , Min Liang , Yige Yao , Yan Zhang , Peng Wang , Jianping Zhang . Experimental and Theoretical Investigations of Solvent Polarity Effect on ESIPT Mechanism in 4′-N,N-diethylamino-3-hydroxybenzoflavone. Acta Physico-Chimica Sinica, 2025, 41(2): 2309027-0. doi: 10.3866/PKU.WHXB202309027
-
[9]
Xiaoling LUO , Pintian ZOU , Xiaoyan WANG , Zheng LIU , Xiangfei KONG , Qun TANG , Sheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271
-
[10]
Lirui Shen , Kun Liu , Ying Yang , Dongwan Li , Wengui Chang . Synthesis and Application of Decanedioic Acid-N-Hydroxysuccinimide Ester: Exploration of Teaching Reform in Comprehensive Applied Chemistry Experiment. University Chemistry, 2024, 39(8): 212-220. doi: 10.3866/PKU.DXHX202312035
-
[11]
Huasen Lu , Shixu Song , Qisen Jia , Guangbo Liu , Luhua Jiang . Advances in Cu2O-based Photocathodes for Photoelectrochemical Water Splitting. Acta Physico-Chimica Sinica, 2024, 40(2): 2304035-0. doi: 10.3866/PKU.WHXB202304035
-
[12]
Yinuo Wang , Siran Wang , Yilong Zhao , Dazhen Xu . Selective Synthesis of Diarylmethyl Anilines and Triarylmethanes via Multicomponent Reactions: Introduce a Comprehensive Experiment of Organic Chemistry. University Chemistry, 2024, 39(8): 324-330. doi: 10.3866/PKU.DXHX202401063
-
[13]
Linjie ZHU , Xufeng LIU . Synthesis, characterization and electrocatalytic hydrogen evolution of two di-iron complexes containing a phosphine ligand with a pendant amine. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 939-947. doi: 10.11862/CJIC.20240416
-
[14]
Zixuan Zhao , Miao Fan . “Carbon” with No “Ester”: A Boundless Journey of CO2 Transformation. University Chemistry, 2025, 40(7): 213-217. doi: 10.12461/PKU.DXHX202409040
-
[15]
Zhuo WANG , Junshan ZHANG , Shaoyan YANG , Lingyan ZHOU , Yedi LI , Yuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067
-
[16]
Jianding LI , Junyang FENG , Huimin REN , Gang LI . Proton conductive properties of a Hf(Ⅳ)-based metal-organic framework built by 2,5-dibromophenyl-4,6-dicarboxylic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1094-1100. doi: 10.11862/CJIC.20240464
-
[17]
Kaihui Huang , Dejun Chen , Xin Zhang , Rongchen Shen , Peng Zhang , Difa Xu , Xin Li . Constructing Covalent Triazine Frameworks/N-Doped Carbon-Coated Cu2O S-Scheme Heterojunctions for Boosting Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(12): 2407020-0. doi: 10.3866/PKU.WHXB202407020
-
[18]
Bing WEI , Jianfan ZHANG , Zhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201
-
[19]
Bizhu Shao , Huijun Dong , Yunnan Gong , Jianhua Mei , Fengshi Cai , Jinbiao Liu , Dichang Zhong , Tongbu Lu . Metal-Organic Framework-Derived Nickel Nanoparticles for Efficient CO2 Electroreduction in Wide Potential Windows. Acta Physico-Chimica Sinica, 2024, 40(4): 2305026-0. doi: 10.3866/PKU.WHXB202305026
-
[20]
Qiang Zhang , Yuanbiao Huang , Rong Cao . Imidazolium-Based Materials for CO2 Electroreduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2306040-0. doi: 10.3866/PKU.WHXB202306040
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(413)
- HTML views(13)