Citation: WANG Qingyin, KANG Wukui, ZHANG Yi, YANG Xiangui, YAO Jie, CHEN Tong, WANG Gongying. Solvent-free thermal decomposition of methylenediphenyl di(phenylcarbamate) catalyzed by nano-Cu2O[J]. Chinese Journal of Catalysis, ;2013, 34(3): 548-558. doi: 10.1016/S1872-2067(11)60494-4 shu

Solvent-free thermal decomposition of methylenediphenyl di(phenylcarbamate) catalyzed by nano-Cu2O

  • Corresponding author: WANG Gongying, 
  • Received Date: 18 September 2012
    Available Online: 26 November 2012

    Fund Project: 国家科技支撑计划(2006BAC02A08) (2006BAC02A08)中国科学院知识创新工程重要方向项目(KGCX2-YW-215-2). (KGCX2-YW-215-2)

  • Methylene di(phenylisocyanate) (MDI) was prepared by thermal decomposition of methylenediphenyl di(phenylcarbamate) (MDPC) under solvent-free conditions with a nano-Cu2O catalyst. The preparation of nano-Cu2O was investigated in detail to obtain the optimal catalytic performance. The thermal decomposition reaction conditions, including reaction temperature, reaction pressure, and reaction time, were studied in the presence of nano-Cu2O. The results show that Cu2O prepared using a hydrolysis method and then calcined at 300℃ in Ar atmosphere for 2 h exhibited the optimal catalytic activity. The optimal reaction conditions were as follows: mass ratio of catalyst to MDPC 6.0 × 10-4, reaction temperature 220℃, reaction time 12 min, and reaction pressure 0.6 kPa. Under these conditions, the conversion of MDPC reached 99.8% and 86.2% MDI selectivity was achieved.
  • 加载中
    1. [1]

      [1] Xu P L, Zhang Sh Q. Handbook of Polyurethane Materials. Beijing: Chem Ind Press (徐培林, 张淑琴. 聚氨酯材料手册. 北京: 化学工业出版社), 2002. 35

    2. [2]

      [2] Yu L M, Zheng B Sh. Chem Ind (余黎明, 郑宝山. 化学工业), 2008, 26(7): 46

    3. [3]

      [3] Xia M, Tang J X. J Zhuzhou Inst Technol (夏敏, 堂建新. 株洲工学院学报), 2000, 14(3): 1

    4. [4]

      [4] Dong Y W, Sun J M, Zhai J, Zhang Zh G, Wang J M. TianJin Chem Ind (东玉武, 孙建梅, 翟江, 张兆贵, 王景明. 天津化工), 2002, (6): 41

    5. [5]

      [5] Mango F D. US Patent 4 163 019. 1979

    6. [6]

      [6] Hammen G, Knoefel H, Friedrichs W. EP Patent 0 396 977. 1990

    7. [7]

      [7] Wang G Y, Chen D, Feng X L, Wang Q Y, Yao J, Wang Y, Zeng Y (王公应, 陈东, 冯秀丽, 王庆印, 姚洁, 王越, 曾毅). CN Patent 1721060. 2005

    8. [8]

      [8] Rosenthal R, Zajacek J G. US Patent 3 919 279. 1975

    9. [9]

      [9] Chen D, Liu L M, Wang Y, Yao J, Wang G Y, Li Sh X, Xue Y, Zhan J H. Chin J Catal (陈东, 刘良明, 王越, 姚洁, 王公应, 李石新, 薛援, 展江红. 催化学报), 2005, 26: 987

    10. [10]

      [10] Deng Y Q, Guo X G, Shi F, Zhang Q H, Ma X Y, Lu L J, Li J, Tian X, Ma Y B, Shang J P, Cui X J, Wang L G, Zhang H Z. US Patent 0 021 810. 2011

    11. [11]

      [11] Guan X, Li H Q, Liu H T, Guo F, Yao X X. J Beijing Univ Chem Technol (Nat Sci) (关雪, 李会泉, 刘海涛, 郭奋, 姚星星. 北京化工大学学报 (自然科学版)), 2009, 36(4): 12

    12. [12]

      [12] Wang J G, Guo X C, Qin Zh F, Wang G F (王建国, 郭星翠, 秦张峰, 王国富). CN Patent 101 269 342. 2008

    13. [13]

      [13] Wang G Y, Dai Y Sh, Wang Q Y, Liu L M, Wang Y, Yao J, Zeng Y (王公应, 戴云生, 王庆印, 刘良明, 王越, 姚洁, 曾毅). CN Patent 101 011 657. 2007

    14. [14]

      [14] Uriz P, Serra M, Salagre P, Castillon S, Claver C, Fernandez E. Tetrahedron Lett, 2002, 43: 1673

    15. [15]

      [15] Hammen G, Knofel H, Friederichs W. US Patent 5 043 471. 1991

    16. [16]

      [16] Zhao X Q, Wang Y J, Wang S F, Yang H J, Zhang J Y. Ind Eng Chem Res, 2002, 41: 5139

    17. [17]

      [17] Bosman J K P, Mangos Jostes N (博斯曼 J K P, 曼格斯乔特斯 N). CN Patent 1 406 224. 2003

    18. [18]

      [18] Mei G J, Shi W, Xie K F, Xia Y. Resources Environ Eng (梅光军, 师伟, 解科峰, 夏洋. 资源环境与工程), 2007, 21: 335

    19. [19]

      [19] Yamada Y, Yano K, Fukuzumi S. Energy Environ Sci, 2012, 5: 5356

    20. [20]

      [20] Zhang Z L, Che H W, Gao J J, Wang Y L, She X L, Sun J, Gunawan P, Zhong Z Y, Su F B. Catal Sci Technol, 2012, 2: 1207

    21. [21]

      [21] Xu Y, Wang H, Yu Y F, Tian L, Zhao W W, Zhang B. J Phys Chem C, 2011, 115: 15288

    22. [22]

      [22] Bai Zh H, Luo B H, Jin X H. Mining Metall Eng (柏振海, 罗兵辉, 金晓鸿. 矿业工程), 2001, 21(4): 67

    23. [23]

      [23] Dai Y Sh, Wang Y, Yao J, Wang Q Y, Liu L M, Wei Ch, Wang G Y. Catal Lett, 2008, 123: 307

    24. [24]

      [24] Ruan Ch X, Chen Ch Q, Zhang Y J, Lin X Y, Zhan Y Y, Zheng Q. Chin J Catal (阮春晓, 陈崇启, 张燕杰, 林性贻, 詹瑛瑛, 郑起. 催化学报 ), 2012, 33: 842

    25. [25]

      [25] Zhang Q H, Li H Q, Liu H T, Pei Y X. Chem J Chin Univ (张琴花, 李会泉, 刘海涛, 裴义霞. 高等学校化学学报), 2011, 32: 1106

  • 加载中
    1. [1]

      Yanhui GuoLi WeiZhonglin WenChaorong QiHuanfeng Jiang . Recent Progress on Conversion of Carbon Dioxide into Carbamates. Acta Physico-Chimica Sinica, 2024, 40(4): 2307004-0. doi: 10.3866/PKU.WHXB202307004

    2. [2]

      Ling Liu Haibin Wang Genrong Qiang . Curriculum Ideological and Political Design for the Comprehensive Preparation Experiment of Ethyl Benzoate Synthesized from Benzyl Alcohol. University Chemistry, 2024, 39(2): 94-98. doi: 10.3866/PKU.DXHX202304080

    3. [3]

      Xiaofei LiuHe WangLi TaoWeimin RenXiaobing LuWenzhen Zhang . Electrocarboxylation of Benzylic Phosphates and Phosphinates with Carbon Dioxide. Acta Physico-Chimica Sinica, 2024, 40(9): 2307008-0. doi: 10.3866/PKU.WHXB202307008

    4. [4]

      Liangzhen Hu Li Ni Ziyi Liu Xiaohui Zhang Bo Qin Yan Xiong . A Green Chemistry Experiment on Electrochemical Synthesis of Benzophenone. University Chemistry, 2024, 39(6): 350-356. doi: 10.3866/PKU.DXHX202312001

    5. [5]

      Jichao XUMing HUXichang CHENChunhui WANGLeichen WANGLingyi ZHOUXing HEXiamin CHENGSu JING . Construction and hydrogen peroxide-activated chemodynamic activity of ferrocene?benzoselenadiazole conjugate. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1495-1504. doi: 10.11862/CJIC.20250144

    6. [6]

      Qianping Li Hua Guan Changfeng Wan Yonghai Song Jianwen Jiang . 大学有机化学复习课项目式教学——以“液晶化合物4-正戊基苯甲酸-4′-正戊基苯酯的合成路线设计与产品制备”为例. University Chemistry, 2025, 40(8): 100-116. doi: 10.12461/PKU.DXHX202410070

    7. [7]

      Caixia Lin Zhaojiang Shi Yi Yu Jianfeng Yan Keyin Ye Yaofeng Yuan . Ideological and Political Design for the Electrochemical Synthesis of Benzoxathiazine Dioxide Experiment. University Chemistry, 2024, 39(2): 61-66. doi: 10.3866/PKU.DXHX202309005

    8. [8]

      Yanglin JiangMingqing ChenMin LiangYige YaoYan ZhangPeng WangJianping Zhang . Experimental and Theoretical Investigations of Solvent Polarity Effect on ESIPT Mechanism in 4′-N,N-diethylamino-3-hydroxybenzoflavone. Acta Physico-Chimica Sinica, 2025, 41(2): 2309027-0. doi: 10.3866/PKU.WHXB202309027

    9. [9]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    10. [10]

      Lirui Shen Kun Liu Ying Yang Dongwan Li Wengui Chang . Synthesis and Application of Decanedioic Acid-N-Hydroxysuccinimide Ester: Exploration of Teaching Reform in Comprehensive Applied Chemistry Experiment. University Chemistry, 2024, 39(8): 212-220. doi: 10.3866/PKU.DXHX202312035

    11. [11]

      Huasen LuShixu SongQisen JiaGuangbo LiuLuhua Jiang . Advances in Cu2O-based Photocathodes for Photoelectrochemical Water Splitting. Acta Physico-Chimica Sinica, 2024, 40(2): 2304035-0. doi: 10.3866/PKU.WHXB202304035

    12. [12]

      Yinuo Wang Siran Wang Yilong Zhao Dazhen Xu . Selective Synthesis of Diarylmethyl Anilines and Triarylmethanes via Multicomponent Reactions: Introduce a Comprehensive Experiment of Organic Chemistry. University Chemistry, 2024, 39(8): 324-330. doi: 10.3866/PKU.DXHX202401063

    13. [13]

      Linjie ZHUXufeng LIU . Synthesis, characterization and electrocatalytic hydrogen evolution of two di-iron complexes containing a phosphine ligand with a pendant amine. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 939-947. doi: 10.11862/CJIC.20240416

    14. [14]

      Zixuan Zhao Miao Fan . “Carbon” with No “Ester”: A Boundless Journey of CO2 Transformation. University Chemistry, 2025, 40(7): 213-217. doi: 10.12461/PKU.DXHX202409040

    15. [15]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    16. [16]

      Jianding LIJunyang FENGHuimin RENGang LI . Proton conductive properties of a Hf(Ⅳ)-based metal-organic framework built by 2,5-dibromophenyl-4,6-dicarboxylic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1094-1100. doi: 10.11862/CJIC.20240464

    17. [17]

      Kaihui HuangDejun ChenXin ZhangRongchen ShenPeng ZhangDifa XuXin Li . Constructing Covalent Triazine Frameworks/N-Doped Carbon-Coated Cu2O S-Scheme Heterojunctions for Boosting Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(12): 2407020-0. doi: 10.3866/PKU.WHXB202407020

    18. [18]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    19. [19]

      Bizhu ShaoHuijun DongYunnan GongJianhua MeiFengshi CaiJinbiao LiuDichang ZhongTongbu Lu . Metal-Organic Framework-Derived Nickel Nanoparticles for Efficient CO2 Electroreduction in Wide Potential Windows. Acta Physico-Chimica Sinica, 2024, 40(4): 2305026-0. doi: 10.3866/PKU.WHXB202305026

    20. [20]

      Qiang ZhangYuanbiao HuangRong Cao . Imidazolium-Based Materials for CO2 Electroreduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2306040-0. doi: 10.3866/PKU.WHXB202306040

Metrics
  • PDF Downloads(0)
  • Abstract views(414)
  • HTML views(13)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return