Citation: ZHANG Wenfei, LIANG Jinhua, LIU Yanqiu, SUN Shoufei, REN Xiaoqian, JIANG Min. Knoevenagel condensation reaction over acid-base bifunctional MgO/HMCM-22 catalysts[J]. Chinese Journal of Catalysis, ;2013, 34(3): 559-566. doi: 10.1016/S1872-2067(11)60493-2 shu

Knoevenagel condensation reaction over acid-base bifunctional MgO/HMCM-22 catalysts

  • Corresponding author: REN Xiaoqian, 
  • Received Date: 30 September 2012
    Available Online: 26 November 2012

    Fund Project: 国家重点基础研究发展计划(973计划, 2009CB724701) (973计划, 2009CB724701) 国家高技术研究发展计划(863计划, 2011AA02A203) (863计划, 2011AA02A203) 江苏省博士后科研资助计划(1001016C). (1001016C)

  • MgO/HMCM-22 catalysts were prepared by impregnation and characterized by X-ray diffraction, N2 physical adsorption-desorption, scanning electron microscopy, Fourier-transform infrared spectroscopy, temperature-programmed desorption of NH3, and temperature-programmed desorption of CO2. The results show that there were no significant structural changes in theMCM-22 zeolite after modification. Increasing the MgO loading increased the strength and content of the base, whereas the strength of the strong acid decreased significantly and the amount of weak acidic sites increased slightly. Knoevenagel condensation reactions were carried out as the probe reactions over the catalysts. Both acidic sites and basic sites significantly promoted the reaction. The conversion of benzaldehyde reached 92.6% under the optimal conditions. The catalytic performance of MgO/HMCM-22 and MgO/NaMCM-22 was better than that of HMCM-22 and MgO. The MgO/HMCM-22 catalysts gave good catalytic performance for Knoevenagel condensation reactions and exhibited obvious acid-base synergetic effects.
  • 加载中
    1. [1]

      [1] Zhang X F, Lai E S M, Martin-Aranda R, Yeung K L. Appl Catal A, 2004, 261: 109

    2. [2]

      [2] Bigi F, Chesini L, Maggi R, Sartori G. J Org Chem, 1999, 64: 1033

    3. [3]

      [3] Parida K M, Rath D. J Mol Catal A, 2009, 310: 93

    4. [4]

      [4] Hein R W, Astle M J, Shelton R J. J Org Chem, 1961, 26: 4874

    5. [5]

      [5] Lan D X, Lin D, Zhao H M, Ma L, Chun Y. Chin J Catal (蓝冬雪, 林丹, 赵会民, 马丽, 淳远. 催化学报), 2011, 32: 1214

    6. [6]

      [6] Shao Y Q, Guan J Q, Wu S J, Liu H, Liu B, Kan Q B. Microporous Mesoporous Mater, 2010, 128: 120

    7. [7]

      [7] Macario A, Giordano G, Onida B, Cocina D, Tagarelli A, Giuffrè A M. Appl Catal A, 2010, 378: 160

    8. [8]

      [8] Vermoortele F, Ameloot R, Vimont A, Serre C, Vos D D. ChemCommun, 2011,47: 1521

    9. [9]

      [9] Hruby S L, Shanks B H. J Catal, 2009, 263: 181

    10. [10]

      [10] Climent M J, Corma A, Iborra S, Velty A. J Mol Catal A,2002, 182-183: 327

    11. [11]

      [11] Peng Y, Wang J Y, Long J, Liu G H. Catal Commun, 2011, 15: 10

    12. [12]

      [12] Postole G, Chowdhury B, Karmakar B, Pinki K, Banerji J, Auroux A. J Catal, 2010, 269: 110

    13. [13]

      [13] Keita I, Nao M, Takayuki T, Masato M. Catal Lett, 2011, 141: 877

    14. [14]

      [14] Wang T, Wu G J, Guan N J, Li L D. Microporous Mesoporous Mater, 2012, 148: 184

    15. [15]

      [15] Yu Zh W, Wang Q, Chen L, Deng F. Chin J Catal (喻志武, 王强, 陈雷, 邓风. 催化学报), 2012, 33: 129

    16. [16]

      [16] Chu N B, Wang J Q, Zhang Y, Yang J H, Lu J M, Yin D H. Chem Mater, 2010, 22: 2757

    17. [17]

      [17] Laforge S, Martin D, Guisnet M. Microporous Mesoporous Mater, 2004, 67: 235

    18. [18]

      [18] Wu Y J, Ren X Q, Lu Y D, Wang J. Microporous Mesoporous Mater, 2008, 112: 138

    19. [19]

      [19] Shang Y C, Yang P P, Jia M J, Zhang W X, Wu T H. Catal Commun, 2008, 9: 907

    20. [20]

      [20] Shu Y Y, Ma D, Xu L Y, Xu Y D, Bao X H. Catal Lett, 2000, 70: 67

    21. [21]

      [21] Jain D, Khatri C, Rani A. Fuel Process Technol, 2010, 91: 1015

    22. [22]

      [22] Corma A, Corell C, Fornés V, Kolodziejski W, Pérez-Pariente J. Zeolite, 1995, 15: 576

    23. [23]

      [23] Kumara G S, Saravanamurugan S, Hartmann M, Palanichamy M, Murugesan V. J Mol Catal A, 2007, 272: 38

    24. [24]

      [24] Liu Z Y, Zhu Z B, Wang R Y, Zhu X D. Chin J Catal (刘子玉, 朱子彬, 王仁远, 朱学栋. 催化学报), 2008, 29: 928

    25. [25]

      [25] Pappas G S, Liatsi P, Kartsonakis I A, Danilidis I, Kordas G. J Non-Cryst Solids, 2008, 354: 755

    26. [26]

      [26] Sakthivel A, Komura K, Huang S J, Wu P H, Liu S B, Sasaki Y, Sugi Y. Ind Eng Chem Res, 2010, 49: 65

    27. [27]

      [27] Xu Q L, Li T C, Yan Y J. J Fuel Chem Technol, 2008, 36: 181

    28. [28]

      [28] Xue B, Li Y X, Deng L J. Catal Commun, 2009, 10: 1609

    29. [29]

      [29] Rodriguez I, Sastre G, Corma A, Iborra S. J Catal, 1999, 183: 14

    30. [30]

      [30] Corma A, Fornés V, Martín-Aranda R M, García H, Primo J. Appl Catal, 1990, 59: 237

    31. [31]

      [31] Gupta R, Gupta M, Paul S, Gupta R. Bull Korean Chem Soc, 2009, 30: 2419

  • 加载中
    1. [1]

      Xiaosong PUHangkai WUTaohong LIHuijuan LIShouqing LIUYuanbo HUANGXuemei LI . Adsorption performance and removal mechanism of Cd(Ⅱ) in water by magnesium modified carbon foam. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1537-1548. doi: 10.11862/CJIC.20240030

    2. [2]

      Yufang GAONan HOUYaning LIANGNing LIYanting ZHANGZelong LIXiaofeng LI . Nano-thin layer MCM-22 zeolite: Synthesis and catalytic properties of trimethylbenzene isomerization reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1079-1087. doi: 10.11862/CJIC.20240036

    3. [3]

      Zhenghua ZHAOQin ZHANGYufeng LIUZifa SHIJinzhong GU . Syntheses, crystal structures, catalytic and anti-wear properties of nickel(Ⅱ) and zinc(Ⅱ) coordination polymers based on 5-(2-carboxyphenyl)nicotinic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 621-628. doi: 10.11862/CJIC.20230342

    4. [4]

      Weizhong LINGXiangyun CHENWenjing LIUYingkai HUANGYu LI . Syntheses, crystal structures, and catalytic properties of three zinc(Ⅱ), cobalt(Ⅱ) and nickel(Ⅱ) coordination polymers constructed from 5-(4-carboxyphenoxy)nicotinic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1803-1810. doi: 10.11862/CJIC.20240068

    5. [5]

      Jimin HOUMengyang LIChunhua GONGShaozhuang ZHANGCaihong ZHANHao XUJingli XIE . Synthesis, structures, and properties of metal-organic frameworks based on bipyridyl ligands and isophthalic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 549-560. doi: 10.11862/CJIC.20240348

    6. [6]

      Pei LiYuenan ZhengZhankai LiuAn-Hui Lu . Boron-Containing MFI Zeolite: Microstructure Control and Its Performance of Propane Oxidative Dehydrogenation. Acta Physico-Chimica Sinica, 2025, 41(4): 2406012-0. doi: 10.3866/PKU.WHXB202406012

    7. [7]

      Hong Lu Yidie Zhai Xingxing Cheng Yujia Gao Qing Wei Hao Wei . Advancements and Expansions in the Proline-Catalyzed Asymmetric Aldol Reaction. University Chemistry, 2024, 39(5): 154-162. doi: 10.3866/PKU.DXHX202310074

    8. [8]

      Yong Shu Xing Chen Sai Duan Rongzhen Liao . How to Determine the Equilibrium Bond Distance of Homonuclear Diatomic Molecules: A Case Study of H2. University Chemistry, 2024, 39(7): 386-393. doi: 10.3866/PKU.DXHX202310102

    9. [9]

      Wenhui Li Changshuo Zhu Xinyu Cui Chenfei Zhao Lina Qiu Yan Li Chuandong Wu Min Yang Yuan Zhuang . Visual Determination of Acid-Base Titration Endpoints Using Smartphone APP-Based Analysis. University Chemistry, 2025, 40(7): 328-335. doi: 10.12461/PKU.DXHX202409062

    10. [10]

      Yuhao SUNQingzhe DONGLei ZHAOXiaodan JIANGHailing GUOXianglong MENGYongmei GUO . Synthesis and antibacterial properties of silver-loaded sod-based zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 761-770. doi: 10.11862/CJIC.20230169

    11. [11]

      Jiali CHENGuoxiang ZHAOYayu YANWanting XIAQiaohong LIJian ZHANG . Machine learning exploring the adsorption of electronic gases on zeolite molecular sieves. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 155-164. doi: 10.11862/CJIC.20240408

    12. [12]

      Yiping HUANGLiqin TANGYufan JICheng CHENShuangtao LIJingjing HUANGXuechao GAOXuehong GU . Hollow fiber NaA zeolite membrane for deep dehydration of ethanol solvent by vapor permeation. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 225-234. doi: 10.11862/CJIC.20240224

    13. [13]

      Xin FengKexin GuoChunguang JiaBowen LiuSuqin CiJunxiang ChenZhenhai Wen . Hydrogen Generation Coupling with High-Selectivity Electrocatalytic Glycerol Valorization into Formate in an Acid-Alkali Dual-Electrolyte Flow Electrolyzer. Acta Physico-Chimica Sinica, 2024, 40(5): 2303050-0. doi: 10.3866/PKU.WHXB202303050

    14. [14]

      Nana Wang Gaosheng Zhang Huosheng Li Tangfu Xiao . Discussion on the Teaching Reform of Environmental Functional Materials within the Context of “Double First-Class” Initiative: Emphasizing the Integration of Industry, Academia, Research, and Application. University Chemistry, 2024, 39(6): 137-144. doi: 10.3866/PKU.DXHX202312010

    15. [15]

      Qiaoqiao BAIAnqi ZHOUXiaowei LITang LIUSong LIU . Construction of pressure-temperature dual-functional flexible sensors and applications in biomedicine. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2259-2274. doi: 10.11862/CJIC.20240128

    16. [16]

      Xueting CaoShuangshuang ChaMing Gong . Interfacial Electrical Double Layer in Electrocatalytic Reactions: Fundamentals, Characterizations and Applications. Acta Physico-Chimica Sinica, 2025, 41(5): 100041-0. doi: 10.1016/j.actphy.2024.100041

    17. [17]

      Weicheng FengJingcheng YuYilan YangYige GuoGeng ZouXiaoju LiuZhou ChenKun DongYuefeng SongGuoxiong WangXinhe Bao . Regulating the High Entropy Component of Double Perovskite for High-Temperature Oxygen Evolution Reaction. Acta Physico-Chimica Sinica, 2024, 40(6): 2306013-0. doi: 10.3866/PKU.WHXB202306013

    18. [18]

      Shanghua LiMalin LiXiwen ChiXin YinZhaodi LuoJihong Yu . High-Stable Aqueous Zinc Metal Anodes Enabled by an Oriented ZnQ Zeolite Protective Layer with Facile Ion Migration Kinetics. Acta Physico-Chimica Sinica, 2025, 41(1): 100003-0. doi: 10.3866/PKU.WHXB202309003

    19. [19]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    20. [20]

      Qianli MaTianbing SongTianle HeXirong ZhangHuanming Xiong . Sulfur-doped carbon dots: a novel bifunctional electrolyte additive for high-performance aqueous zinc-ion batteries. Acta Physico-Chimica Sinica, 2025, 41(9): 100106-0. doi: 10.1016/j.actphy.2025.100106

Metrics
  • PDF Downloads(0)
  • Abstract views(435)
  • HTML views(47)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return