Citation: SUI Minghao, SHE Lei, SHENG Li, WEI Jinjie, ZHANG Lingdian, HUANG Shuhang. Ordered mesoporous manganese oxide as catalyst for hydrogen peroxide oxidation of norfloxacin in water[J]. Chinese Journal of Catalysis, ;2013, 34(3): 536-541. doi: 10.1016/S1872-2067(11)60492-0 shu

Ordered mesoporous manganese oxide as catalyst for hydrogen peroxide oxidation of norfloxacin in water

  • Corresponding author: SUI Minghao, 
  • Received Date: 31 August 2012
    Available Online: 22 November 2012

    Fund Project: 国家自然科学基金(50708067, 51078281, 51278351) (50708067, 51078281, 51278351) 百篇优秀博士论文项目(2007B48) (2007B48) 国家科技重大专项(2012ZX07408001) (2012ZX07408001)中央高校基本科研业务费专项基金(0400219192). (0400219192)

  • Ordered mesoporous manganese oxide (om-MnOx) was prepared and used in oxidation by hydrogen peroxide of norfloxacin (NFX). The om-MnOx was prepared using a hard template method. The catalytic activity of om-MnOx was investigated by evaluating the changes in degradation efficiency and antibacterial activity of NFX. om-MnOx exhibited significant catalytic activity for the degradation of NFX in water by hydrogen peroxide. Lower pH conditions favored the catalytic activity of om-MnOx/hydrogen peroxide. The presence of om-MnOx achieved a greater reduction in the antibacterial ability of NFX than that was obtained with hydrogen peroxide alone. The inhibiting effect of t-butanol indicated that om-MnOx enhanced the generation of hydroxyl radicals. Byproducts from NFX were detected during the om-MnOx-catalyzed hydrogen peroxide process, and possible reaction pathways were proposed.
  • 加载中
    1. [1]

      [1] Thiele-Bruhn S. J Plant Nutr Soil Sci, 2003, 166: 145

    2. [2]

      [2] Hooper D C, Wolfson J S. Quinolone Antibacterial Agents. 2nd Ed. Washington: American Society for Microbiology, 1993. 384

    3. [3]

      [3] Alexy R, Kümpel T, Kümmerer K. Chemosphere, 2006, 57: 505

    4. [4]

      [4] Zhang L L, Nie Y L, Hu C, Hu X X. JHazard Mater, 2011, 190: 780

    5. [5]

      [5] Han Y F, Chen F X, Ramesh K, Zhong Z Y, Widjaja E, Chen L W. Appl Catal B, 2007, 76: 227

    6. [6]

      [6] Watts R J, Saras Ja, Loge F J, Teel A L. J Environ Eng, 2005, 131: 158

    7. [7]

      [7] Yang L, Hu C, Nie Y L, Qu J H. Environ Sci Technol, 2009, 43: 2525

    8. [8]

      [8] Sui M H, Liu J, Sheng L. Appl Catal B, 2011, 106: 195

    9. [9]

      [9] Taguchi A, Schüth F. MicroporousMesoporous Mater, 2005, 77: 1

    10. [10]

      [10] Li L X, Hua P, Tian X K, Yang C, Pi Z B. Electrochim Acta, 2010, 55:1682

    11. [11]

      [11] Zhao D, Feng J, Huo Q, Melosh N, Fredrickson G H, Chmelka B F, Stucky G D. Science, 1998, 279: 548

    12. [12]

      [12] Tian Z R, Tong W, Wang J Y, Duan N G, Krishnan V V, Suib S L. Science, 1997, 276: 926

    13. [13]

      [13] Ernst M, Lurot F, Schrotter J C. Appl Catal B, 2004, 47: 15

    14. [14]

      [14] Sui M H, Sheng L, Lu K X, Tian F. Appl Catal B, 2010, 96: 94

    15. [15]

      [15] Karl W, Schneider J, Wetzstern H G. Appl Microbiol Biotechnol, 2006, 71: 101

    16. [16]

      [16] Eisenberg G M. Ind Eng Chem Anal, 1943, 15: 327

    17. [17]

      [17] Dodd M C, Kohler H P E, Von Gunten U. Environ Sci Technol, 2009, 43: 2498

    18. [18]

      [18] Paul T, Dodd M C, Strathmann T J. Water Res, 2010, 44: 3121

    19. [19]

      [19] Meynen V, Cool P, Vansant E F. Microporous Mesoporous Mater, 2009, 125: 170

    20. [20]

      [20] Zhu S M, Zhou Z Y, Zhang D, Wang H H. Microporous Mesoporous Mater, 2006, 95: 257

    21. [21]

      [21] Buxton G V, Greenstock C L, Helman W P, Ross A B. J Phys Chem Ref Data, 1988, 17: 513

    22. [22]

      [22] Ervens B, Gligorovski S, Herrmann H. Phys Chem Chem Phys, 2003, 5: 1811

    23. [23]

      [23] Witte B D, Dewulf J, Demeestere K, Vyvere V V D, Wispelaere P D, Langenhove H V. Environ Sci Techno l, 2008, 42: 4889

  • 加载中
    1. [1]

      Liu LinZemin SunHuatian ChenLian ZhaoMingyue SunYitao YangZhensheng LiaoXinyu WuXinxin LiCheng Tang . Recent Advances in Electrocatalytic Two-Electron Water Oxidation for Green H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(4): 2305019-0. doi: 10.3866/PKU.WHXB202305019

    2. [2]

      Zhaoyu WenNa HanYanguang Li . Recent Progress towards the Production of H2O2 by Electrochemical Two-Electron Oxygen Reduction Reaction. Acta Physico-Chimica Sinica, 2024, 40(2): 2304001-0. doi: 10.3866/PKU.WHXB202304001

    3. [3]

      Jiaxi Xu Yuan Ma . Influence of Hyperconjugation on the Stability and Stable Conformation of Ethane, Hydrazine, and Hydrogen Peroxide. University Chemistry, 2024, 39(11): 374-377. doi: 10.3866/PKU.DXHX202402049

    4. [4]

      Fan FanHao XiuYuting WangYongpeng CuiYajun Wang . Construction of NH2-MIL-125/Na-doped g-C3N4 composite S-scheme heterojunction and its performance in photocatalytic hydrogen peroxide production. Acta Physico-Chimica Sinica, 2026, 42(2): 100143-0. doi: 10.1016/j.actphy.2025.100143

    5. [5]

      Peng YUELiyao SHIJinglei CUIHuirong ZHANGYanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210

    6. [6]

      Qi Zhang Ziyu Liu Hongxia Tan Jun Tong Dazhen Xu . Research Progress on Direct Synthesis of β-Hydroxy Sulfones via Difunctionalization of Olefins. University Chemistry, 2025, 40(11): 199-209. doi: 10.12461/PKU.DXHX202412064

    7. [7]

      Jingping LiSuding YanJiaxi WuQiang ChengKai Wang . Improving hydrogen peroxide photosynthesis over inorganic/organic S-scheme photocatalyst with LiFePO4. Acta Physico-Chimica Sinica, 2025, 41(9): 100104-0. doi: 10.1016/j.actphy.2025.100104

    8. [8]

      Ke LiChuang LiuJingping LiGuohong WangKai Wang . Architecting Inorganic/Organic S-Scheme Heterojunction of Bi4Ti3O12 Coupling with g-C3N4 for Photocatalytic H2O2 Production from Pure Water. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-0. doi: 10.3866/PKU.WHXB202403009

    9. [9]

      Xiaofeng ZhuBingbing XiaoJiaxin SuShuai WangQingran ZhangJun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-0. doi: 10.3866/PKU.WHXB202407005

    10. [10]

      Zhuoya WANGLe HEZhiquan LINYingxi WANGLing LI . Multifunctional nanozyme Prussian blue modified copper peroxide: Synthesis and photothermal enhanced catalytic therapy of self-provided hydrogen peroxide. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2445-2454. doi: 10.11862/CJIC.20240194

    11. [11]

      Yu Dai Xueting Sun Haoyu Wu Naizhu Li Guoe Cheng Xiaojin Zhang Fan Xia . Determination of the Michaelis Constant for Gold Nanozyme-Catalyzed Decomposition of Hydrogen Peroxide. University Chemistry, 2025, 40(5): 351-356. doi: 10.12461/PKU.DXHX202407052

    12. [12]

      Jichao XUMing HUXichang CHENChunhui WANGLeichen WANGLingyi ZHOUXing HEXiamin CHENGSu JING . Construction and hydrogen peroxide-activated chemodynamic activity of ferrocene?benzoselenadiazole conjugate. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1495-1504. doi: 10.11862/CJIC.20250144

    13. [13]

      Kangjuan ChengChunxiao LiuYoupeng WangQiu JiangTingting ZhengXu LiChuan Xia . Design of noble metal catalysts and reactors for the electrosynthesis of hydrogen peroxide. Acta Physico-Chimica Sinica, 2025, 41(10): 100112-0. doi: 10.1016/j.actphy.2025.100112

    14. [14]

      Peiyu Zhang Aixin Song Jingcheng Hao Jiwei Cui . 高频超声法制备聚多巴胺薄膜综合实验. University Chemistry, 2025, 40(6): 210-214. doi: 10.12461/PKU.DXHX202407081

    15. [15]

      Mahmoud SayedHan LiChuanbiao Bie . Challenges and prospects of photocatalytic H2O2 production. Acta Physico-Chimica Sinica, 2025, 41(9): 100117-0. doi: 10.1016/j.actphy.2025.100117

    16. [16]

      Yanyan ZhaoZhen WuYong ZhangBicheng ZhuJianjun Zhang . Enhancing photocatalytic H2O2 production via dual optimization of charge separation and O2 adsorption in Au-decorated S-vacancy-rich CdIn2S4. Acta Physico-Chimica Sinica, 2025, 41(11): 100142-0. doi: 10.1016/j.actphy.2025.100142

    17. [17]

      Liangliang SongHaoyan LiangShunqing LiBao QiuZhaoping Liu . Challenges and strategies on high-manganese Li-rich layered oxide cathodes for ultrahigh-energy-density batteries. Acta Physico-Chimica Sinica, 2025, 41(8): 100085-0. doi: 10.1016/j.actphy.2025.100085

    18. [18]

      Chunmei GUOWeihan YINJingyi SHIJianhang ZHAOYing CHENQuli FAN . Facile construction and peroxidase-like activity of single-atom platinum nanozyme. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1633-1639. doi: 10.11862/CJIC.20240162

    19. [19]

      Ruifeng CHENChao XUJianting JIANGTianshe YANG . Gold nanorod/zinc oxide/mesoporous silica nanoplatform: A triple-modal platform for synergistic anticancer therapy. Chinese Journal of Inorganic Chemistry, 2025, 41(11): 2272-2282. doi: 10.11862/CJIC.20250117

    20. [20]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

Metrics
  • PDF Downloads(0)
  • Abstract views(567)
  • HTML views(50)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return