Citation: JIAO Yanchao, ZHU Mingfeng, CHEN Feng, ZHANG Jinlong. La-doped titaniananocrystals with superior photocatalytic activity prepared by hydrothermal method[J]. Chinese Journal of Catalysis, ;2013, 34(3): 585-592. doi: 10.1016/S1872-2067(11)60483-X shu

La-doped titaniananocrystals with superior photocatalytic activity prepared by hydrothermal method

  • Corresponding author: CHEN Feng, 
  • Received Date: 15 October 2012
    Available Online: 10 November 2012

    Fund Project: 国家自然科学基金(20777015) (20777015) 上海市教委科研创新项目(13ZZ042). (13ZZ042)

  • Potassium titanate (KTO) nanobars were synthesized by a hydrothermal method and used as a precursor to synthesize TiO2 nanocrystals. La doping of the TiO2 nanocrystals was achieved by introducing La3+ into the hydrothermal media. The hydrothermal transition of KTO to TiO2 was investigated under various conditions,finding that the pH of the hydrothermal media, the temperature, and the pre-treating procedure play important roles in the phase transition. X-ray diffraction and transmission electron microscopywere used to characterize the crystal phase and morphology of the samples and the transition process of the hydrothermal reaction. The content of La3+ in the samples was measured by inductively coupled plasma atomic emission spectroscopy. The photocatalytic activity of the La-doped TiO2(LaT) was measured under UV light with the degradation of methyl orange (MO, 10 mg/L).The results showed that the photocatalytic activity of TiO2 was enhanced remarkably by La-doping. LaT hydrothermally prepared with 0.15 mol/L La3+at under 180℃ showedthe optimal reaction constant of 0.11 min-1 for the degradation of MO, about 9.20 and 3.69 times than those of bare TiO2 and P25, respectively.
  • 加载中
    1. [1]

      [1] Fujishima A,Honda K.Nature, 1972, 37: 238

    2. [2]

      [2] Fujishima A, Rao T N, Tryk D A.JPhotochem Photobiol C, 2000, 1: 1

    3. [3]

      [3] MahmoodT, Wang X S, Chen C C, Ma W H, Zhao J C.Chin J Catal (塔里克, 王雪松, 陈春城, 马万红, 赵进才. 催化学报),2007,28: 1117

    4. [4]

      [4] Li H X, Zhu J. Chin J Catal (李和兴, 朱建. 催化学报), 2008, 29: 91

    5. [5]

      [5] ChenX B.Chin J Catal (陈晓波. 催化学报), 2009, 30: 839

    6. [6]

      [6] Li N, Zhang L D, Chen Y Z, Fang M, Zhang J X, Wang H M.Adv Funct Mater, 2012, 22: 835

    7. [7]

      [7] Qian D N, Xu B, Cho H M, Hatsukade T, Carroll K J, Meng Y S.Chem Mater, 2012, 24: 2744

    8. [8]

      [8] Xiao M, Wang X, Zhang Q Q, Ding H M.Chin J Inorg Chem, 2012, 28: 1743

    9. [9]

      [9] Lu R, Jiang G S, Li B, Zhao Q L, Zhang D Q, Yuan J, Cao M S. Chin Phys Lett, 2012, 29: 058101

    10. [10]

      [10] Huang Y, Wu J, Li T, Hao S, Lin J. J Porous Mater,2006, 13: 55

    11. [11]

      [11] Cui W Q, Qi Y L, Hu J S, Liu L, Liang Y H.Acta Chim Sin, 2012, 70: 691

    12. [12]

      [12] Kumar V, Govind, Uma S.J Hazard Mater, 2011, 189: 502

    13. [13]

      [13] Shen W H, Nitta A, Chen Z, Eda T, Yoshida A, Naito S.JCatal, 2011, 280: 161

    14. [14]

      [14] Zhao B, Chen F, Huang Q, Zhang J.Chem Commun,2009: 5115

    15. [15]

      [15] Zhao B, Chen F, Jiao Y, Yang H, Zhang J.J Mol Catal A,2011, 348: 114

    16. [16]

      [16] Jiao Y, Zhao B, Chen F, Zhang J.CrystEngComm, 2011, 13: 4167

    17. [17]

      [17] Nian J N, Teng H.J Phys Chem B,2006, 110: 4193

    18. [18]

      [18] Zhu H Y, Lan Y, Gao X P, Ringer S P, Zheng Z F, Song D Y, Zhao J C. J Am Chem Soc, 2005, 127:6730

    19. [19]

      [19] Mao Y B, Wong S S.J Am Chem Soc,2006, 128:8217

    20. [20]

      [20] Bavykin D V, Friedrich J M, Lapkin A A, Walsh F C. Chem Mater,2006, 18:1124

    21. [21]

      [21] Zhao Q H, Quan X J, Tan H Q, Sang X M. Chin J Catal (赵清华, 全学军, 谭怀琴, 桑雪梅. 催化学报),2008, 29: 269

    22. [22]

      [22] Wei W, Dai Y, Guo M, Yu L, Huang B B.J Phys Chem C,2009,113: 15046

    23. [23]

      [23] Kasuga T, Hiramatsu M, Hoson A, Sekino T, Niihara K.Adv Mater, 1999, 11: 1307

    24. [24]

      [24] Cao J C, Wang A L, Yin H B, Shen L Q, Ren M, Han S Q, Shen Y T, Yu L B, Jiang T S. Ind Eng Chem Res,2010, 49: 9128

    25. [25]

      [25] Li J G, Ishigaki T, Sun X. J Phys Chem C, 2007, 111: 4969

    26. [26]

      [26] Xu J S, Zhang H, Li W B, Zhang J, Liu X Y, He X K, Xu D L, Qian J H, Liu L.Micro Nano Lett, 2012, 7: 654

    27. [27]

      [27] Wu Y, Liu H, Zhang J, Chen F.J Phys Chem C, 2009, 113: 14689

    28. [28]

      [28] Tsai C-C, Teng H. Chem Mater, 2006, 18: 367

  • 加载中
    1. [1]

      Han ZHANGJianfeng SUNJinsheng LIANG . Hydrothermal synthesis and luminescent properties of broadband near-infrared Na3CrF6 phosphor. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 349-356. doi: 10.11862/CJIC.20240098

    2. [2]

      Hailang JIAPengcheng JIHongcheng LI . Preparation and performance of nickel doped ruthenium dioxide electrocatalyst for oxygen evolution. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1632-1640. doi: 10.11862/CJIC.20240398

    3. [3]

      Yan KongWei WeiLekai XuChen Chen . Electrochemical Synthesis of Organonitrogen Compounds from N-integrated CO2 Reduction Reaction. Acta Physico-Chimica Sinica, 2024, 40(8): 2307049-0. doi: 10.3866/PKU.WHXB202307049

    4. [4]

      Zhangyong LIULihui XUYue YANGLiming WANGHong PANXinzhe HUANGXueqiang FUYingxiu ZHANGMeiran DOUMeng WANGYi TENG . Preparation and photocatalytic performance of CsxWO3/TiO2 based on full spectral response. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1445-1464. doi: 10.11862/CJIC.20240345

    5. [5]

      Ke LiChuang LiuJingping LiGuohong WangKai Wang . Architecting Inorganic/Organic S-Scheme Heterojunction of Bi4Ti3O12 Coupling with g-C3N4 for Photocatalytic H2O2 Production from Pure Water. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-0. doi: 10.3866/PKU.WHXB202403009

    6. [6]

      Zhiquan ZhangBaker RhimiZheyang LiuMin ZhouGuowei DengWei WeiLiang MaoHuaming LiZhifeng Jiang . Insights into the Development of Copper-Based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-0. doi: 10.3866/PKU.WHXB202406029

    7. [7]

      Jianan HongChenyu XuYan LiuChangqi LiMenglin WangYanwei Zhang . Decoding the interfacial competition between hydrogen evolution and CO2 reduction via edge-active-site modulation in photothermal catalysis. Acta Physico-Chimica Sinica, 2025, 41(9): 100099-0. doi: 10.1016/j.actphy.2025.100099

    8. [8]

      Zhengzheng LIUPengyun ZHANGChengri WANGShengli HUANGGuoyu YANG . Synthesis, structure, and electrochemical properties of a sandwich-type {Co6}-cluster-added germanotungstate. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1173-1179. doi: 10.11862/CJIC.20240039

    9. [9]

      Juan CHENGuoyu YANG . A porous-layered aluminoborate built by mixed oxoboron clusters and AlO4 tetrahedra. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 193-200. doi: 10.11862/CJIC.20240341

    10. [10]

      Qiang ZhangYuanbiao HuangRong Cao . Imidazolium-Based Materials for CO2 Electroreduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2306040-0. doi: 10.3866/PKU.WHXB202306040

    11. [11]

      Caixia Lin Zhaojiang Shi Yi Yu Jianfeng Yan Keyin Ye Yaofeng Yuan . Ideological and Political Design for the Electrochemical Synthesis of Benzoxathiazine Dioxide Experiment. University Chemistry, 2024, 39(2): 61-66. doi: 10.3866/PKU.DXHX202309005

    12. [12]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    13. [13]

      Xueqi YangJuntao ZhaoJiawei YeDesen ZhouTingmin DiJun Zhang . 调节NNU-55(Fe)的d带中心以增强CO2吸附和光催化活性. Acta Physico-Chimica Sinica, 2025, 41(7): 100074-0. doi: 10.1016/j.actphy.2025.100074

    14. [14]

      Bizhu ShaoHuijun DongYunnan GongJianhua MeiFengshi CaiJinbiao LiuDichang ZhongTongbu Lu . Metal-Organic Framework-Derived Nickel Nanoparticles for Efficient CO2 Electroreduction in Wide Potential Windows. Acta Physico-Chimica Sinica, 2024, 40(4): 2305026-0. doi: 10.3866/PKU.WHXB202305026

    15. [15]

      Hui-Ying ChenHao-Lin ZhuPei-Qin LiaoXiao-Ming Chen . Integration of Ru(Ⅱ)-Bipyridyl and Zinc(Ⅱ)-Porphyrin Moieties in a Metal-Organic Framework for Efficient Overall CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2306046-0. doi: 10.3866/PKU.WHXB202306046

    16. [16]

      Yuanqing WangYusong PanHongwu ZhuYanlei XiangRong HanRun HuangChao DuChengling Pan . Enhanced Catalytic Activity of Bi2WO6 for Organic Pollutants Degradation under the Synergism between Advanced Oxidative Processes and Visible Light Irradiation. Acta Physico-Chimica Sinica, 2024, 40(4): 2304050-0. doi: 10.3866/PKU.WHXB202304050

    17. [17]

      Zhiwen HUWeixia DONGQifu BAOPing LI . Low-temperature synthesis of tetragonal BaTiO3 for piezocatalysis. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 857-866. doi: 10.11862/CJIC.20230462

    18. [18]

      Xi YANGChunxiang CHANGYingpeng XIEYang LIYuhui CHENBorao WANGLudong YIZhonghao HAN . Co-catalyst Ni3N supported Al-doped SrTiO3: Synthesis and application to hydrogen evolution from photocatalytic water splitting. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 440-452. doi: 10.11862/CJIC.20240371

    19. [19]

      Minna Ma Yujin Ouyang Yuan Wu Mingwei Yuan Lijuan Yang . Green Synthesis of Medical Chemiluminescence Reagents by Photocatalytic Oxidation. University Chemistry, 2024, 39(5): 134-143. doi: 10.3866/PKU.DXHX202310093

    20. [20]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

Metrics
  • PDF Downloads(0)
  • Abstract views(346)
  • HTML views(12)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return