Au-catalyzed neighboring hydroxymethyl group directed cycloaddition of alkyne with diazadienes: Synthesis of polysubstituted pyrroles

Zhenwei Shi Wenxiu Mao Zhenning Yang Shuzhe Sun Chen-Ho Tung Zhenghu Xu

Citation:  Zhenwei Shi, Wenxiu Mao, Zhenning Yang, Shuzhe Sun, Chen-Ho Tung, Zhenghu Xu. Au-catalyzed neighboring hydroxymethyl group directed cycloaddition of alkyne with diazadienes: Synthesis of polysubstituted pyrroles[J]. Chinese Chemical Letters, 2023, 34(1): 107488. doi: 10.1016/j.cclet.2022.05.002 shu

Au-catalyzed neighboring hydroxymethyl group directed cycloaddition of alkyne with diazadienes: Synthesis of polysubstituted pyrroles

English

  • Pyrroles represent one of the most important class of five-membered heterocycles that are prevalent in a number of biologically active natural products [1-3] and synthetic pharmaceuticals (Fig. 1) [4-7]. For instance, Lipitor, containing a tetrasubstituted pyrrole core, is one of the most best-selling drugs in synthetic pharmaceutical history by Pfizer and primarily used to lower blood cholesterol and treat cardiovascular disease. Thus many synthetic methods [8-11] toward pyrrole rings have been developed, including name reactions such as Paal-Knorr reactions. These methods suffered from accessing pyrrole containing sensitive functional groups and the inability to provide pyrrole ring with high flexibility. Therefore development of new and efficient methods to build polysubstituted pyrrole ring from readily available starting material under mild reaction conditions is highly desirable. Intermolecular cycloaddition reaction provided a modular approach to construct multisubstituted pyrroles and various [4 + 1] [12-18], [3 + 2] [19-36], and [2 + 2 + 1] [37-47] cycloaddition strategies have been developed [48-53]. Herein, we reported a new gold catalyzed [3 + 2] cycloaddition reaction of terminal alkynes with 1, 2-diaza-1, 3-dienes to construct tetrasubstituted pyrroles. This reaction featured by using a neighboring hydroxymethyl as a directing group through addition/cycloaddition/elimination cascade, which are totally different with traditional cyclcometallation approach in directing group assisted C-H activations. To the best of our knowledge, such kind of directing approach has not been reported in literatures.

    Figure 1

    Figure 1.  Representative pyrrole-containing natural products and pharmaceuticals.

    In recent years, homogeneous gold catalysis has witnessed an exponential growth in organic synthesis. Gold catalysts serving as π-acids can activate C-C multiple bonds and trigger subsequent cascade reactions to assemble complex structures [54-71]. Recently we [72-75] and other groups [76-80] developed an efficient gold and metal Lewis acid combination strategy to construct complex fused, spiro and bridged rings (Scheme 1A). Gold-catalyzed 5-exo-dig cyclization of an alkynyl alcohol generating an active exocyclic enolether intermediate (M), subsequent Lewis aicd catalyzed inverse-electron-demand hetero-Diels-Alder reaction with electron deficient unsaturated ketone ester or ortho-quinone methides could form various polycycles in one step with high reaction efficiency. Following this concept, we wish to extend this reaction mode to 1, 2-diaza-1, 3-dienes. We reasoned that the [3 + 2] type reaction of the electron-deficient 1, 2-diaza-1, 3-dienes with our gold-catalyzed in situ formed enol ether M would form the spirocycle N (Scheme 1B). Indeed, when we performed this reaction, the target sprio product N was not observed, but another polysubstituted pyrrole product was isolated, which constitutes a [3 + 2] cycloaddition between alkyne and azadiene to synthesize pyrroles, and thus the neighboring hydroxymethyl group serve as an important directing group. In this communication, we report the preliminary results of this serendipity.

    Scheme 1

    Scheme 1.  Gold-catalyzed cycloisomerization/cycloaddition cascade leading to polycycles.

    Following previous Au-catalytic strategy, 1, 2-diaza-1, 3-diene 1a and alkynyl alcohol 2a were chose as the model substrates to test the viability of this hypothesis (Scheme 2). When the reaction was performed with Ph3PAuNTf2 as the catalyst, a new product was isolated in 18% yield. To our great surprise, it is not the expected spiro adduct N, but a tetrasubstituted pyrrole 3a. The structure was carefully characterized by NMR and mass analysis, and finally confirmed by the single X-ray analysis (Scheme 2). Inspired by these results, we continued to optimize reaction conditions to develop an efficient catalytic system toward pyrroles (Table 1, for details, see Supporting information). Various transition-metal catalysts were screened at room temperature, copper(I) and Ag(I) could not deliver any products, and the reactants remained unreacted (entries 1 and 2, Table 1). Then various gold catalysts were tested (entries 3-7), and when 10 mol% of (tBu2PhO)3PAuNTf2 was used, the target pyrrole was isolated in highest 86% yield (entry 7), which is the optimized conditions. Lowering the catalyst loading to 5 mol%, much lower 53% yield was observed (entry 8). The effect of solvents was examined (entries 9-12) and acetonitrile proved to be the most favorable solvent. Decreasing or increasing the reaction temperature all led to decreased yield (entries 13 and 14).

    Scheme 2

    Scheme 2.  Initial formation of the unexpected pyrrole 3a and crystal structure of 3d.

    Table 1

    Table 1.  Reaction condition optimization.a
    DownLoad: CSV

    With the optimized reaction conditions in hand, the substrate scope was explored (Scheme 3). Diverse substituted alkynyl alcohols and 1, 2-diaza-1, 3-dienes were prepared and subjected to the standard reactions, a large variety of polysubstituted pyrroles were synthesized in good yields. Electron-donating groups such as methyl (3d) and methoxyl (3b and 3c), and electron-withdrawing groups such as fluoro (3f) on the aromatic ring are all compatible with the reaction. Adding one methyl on the directing hydroxymethyl group does not affect this reaction (3g). Various ester, ketone, amide functionalized diaza-1, 3-dienes are all suitable substrates, giving good yields of the corresponding pyrroles (3h-3l). Internal alkynes 2m and 2n were also viable in this reaction, affording a mixture of two regioisomers, and the ration is almost 1:1.

    Scheme 3

    Scheme 3.  Scope of gold-catalyzed cascade reaction to the tetrasubstituted pyrroles.

    To gain insights into the reaction mechanism, we conducted several control experiments. Simple phenylacetylene or move the hydroxymethyl group to the para position, no desired products were observed, indicating the importance of this ortho directing effect of hydroxymethyl group (Scheme 4A). To further figure out the addition/elimination process, we carried out deuteration experiments (Scheme 4B). When the reaction was performed under standard condition with extra 5 equiv. of D2O, the hydrogen on pyrrole ring was 25% deuterated, and 86% deuterated if 10 equiv. of D2O was added (reaction 2). Control experiments of phenylacetylene under the same conditions indicating there is a fast H-D exchange process through an alkynyl gold intermediate (reaction 3). If deuterated substrate 2a-D was subjected to standard reaction under anhydrous conditions, the isolated product 3a was 70% deuterated (reaction 4).

    Based on these experiments and previous literatures, a plausible mechanism was proposed in Scheme 5. Au-catalyzed 5-exo-dig cyclization gives alkenyl gold intermediate, and subsequent proton deauration affords electron-rich enol ether intermediate M. The cycloaddition of M with 2a, produced spiro polycycle N. Stepwise nucleophilic addition of M to 1a and subsequent cyclization route could not be excluded. Then a Lewis acid promoted C-O bond cleavage forming a carbon cation, and aromatization elimination of proton afforded pyrrole product 3a. Both H+ and D+ was possibly eliminated, which accord with the deuteration results in (Scheme 4, reactions 2 and 4). Herein, the aromatization is the major driving force for the elimination reactions.

    Scheme 4

    Scheme 4.  Control experiments.

    Scheme 5

    Scheme 5.  Proposed mechanism.

    To further highlight the synthetic utility of our reported method, we carried out product derivatizations. The hydroxymethyl group is not only a directing group, but also a very useful synthetic handles for further transformations (Scheme 6). Treatment of 3a with PBr3 led to the formation of 4 in 82% yield, subsequent Cs2CO3 promoted cyclization gave tricyclic heterocycle 5 in 90% yield. Alternatively, PCC oxidation of 3a generated tricyclic hemiaminal heterocycle 6 in 78% yield.

    Scheme 6

    Scheme 6.  Synthetic elaborations of product.

    In summary, we have established the first Au-catalyzed cycloaddition of alkynes with azadienes to access tetrasubstituted pyrroles. It is noteworthy that the employment of an ortho hydroxymethyl group as a directing group is key to the success of this reaction. The directing group participates in the reaction with an addition/elimination process, which are totally different with traditional cyclometallation pathway. This type of directing effect enriched the chemistry of organometallics mediated transformations, and offer new opportunities in organic synthesis. Further application of this strategy is going on in our lab and will be reported in due course.

    There are no conflicts of interests to declare.

    We are grateful for the financial support from the Natural Science Foundation of China and Shandong Province (Nos. 21971149, 92156007, ZR2019ZD45, ZR2020KB005), and the Fundamental Research Funds of Shandong University. We thank the Analytical Center of Shandong University where carrying out the NMR, mass spectra and X-ray crystallographic analysis.

    Supplementary material associated with this article can be found, in the online version, at doi:10.1016/j.cclet.2022.05.002.


    1. [1]

      D.P. O'Malley, K. Li, M. Maue, A.L. Zografos, P.S. Baranet, J. Am. Chem. Soc.129 (2007) 4762-4775 doi: 10.1021/ja069035a

    2. [2]

      C.C. Hughes, A. Prieto-Davo, P.R. Jensen, W. Fenical, Org. Lett. 10 (2008) 629-631 doi: 10.1021/ol702952n

    3. [3]

      D.L. Boger, C.W. Boyce, M.A. Labroli, C.A. Sehon, Q. Jin, J. Am. Chem. Soc. 121 (1999) 54-62 doi: 10.1021/ja982078+

    4. [4]

      C. Teixeira, F. Barbault, J. Rebehmed, et al., Bioorg. Med. Chem. 16 (2008) 3039-3048 doi: 10.1016/j.bmc.2007.12.034

    5. [5]

      M. Biava, G.C. Porretta, D. Deidda, et al., Bioorg. Med. Chem. 12 (2004) 1453-1458 doi: 10.1016/j.bmc.2003.12.037

    6. [6]

      M. Protopopova, E. Bogatcheva, B. Nikonenko, et al., Med. Chem. 3 (2007) 301-316 doi: 10.2174/157340607780620626

    7. [7]

      W. Tian, B. Li, D. Tian, W. Tang, Chin. Chem. Lett. 33 (2022) 197–200 doi: 10.1016/j.cclet.2021.06.091

    8. [8]

      M.W. Rommi, S.F. MacDonald, Can. J. Chem. 48 (1970) 1689-1697 doi: 10.1139/v70-279

    9. [9]

      L. Knorr, Ber. Dtsch. Chem. Ges. 17 (1884) 1635-1641 doi: 10.1002/cber.18840170220

    10. [10]

      D.H.R. Barton, S.Z. Zard, J. Chem. Soc. Chem. Commun. (1985) 1098-1100

    11. [11]

      W.S. Bishop, J. Am. Chem. Soc. 6 (1945) 2261-2262 doi: 10.1021/ja01228a502

    12. [12]

      K. Luo, S. Mao, K. He, et al., ACS Catal. 10 (2020) 3733-3740 doi: 10.1021/acscatal.9b05360

    13. [13]

      P. Daw, S. Chakraborty, J.A. Garg, Y. Ben-David, D. Milstein, Angew. Chem. Int. Ed. 55 (2016) 14373-14377 doi: 10.1002/anie.201607742

    14. [14]

      R.L. Sahani, R.S. Liu, Angew. Chem. Int. Ed. 56 (2017) 1026-1030 doi: 10.1002/anie.201610665

    15. [15]

      B. Emayavaramban, M. Sen, B. Sundararaju, Org. Lett. 19 (2017) 6-9 doi: 10.1021/acs.orglett.6b02819

    16. [16]

      C.G. Overberger, L.C. Palmer, B.S. Marks, N.R. Byrd, J. Am. Chem. Soc. 77 (1955) 4100-4104 doi: 10.1021/ja01620a040

    17. [17]

      W. Geng, W.X. Zhang, W. Hao, Z. Xi, J. Am. Chem. Soc. 134 (2012) 20230-20233 doi: 10.1021/ja308950d

    18. [18]

      Y. Shan, L. Su, D. Chen, Chin. Chem. Lett. 32 (2021) 437–440 doi: 10.1016/j.cclet.2020.04.041

    19. [19]

      O.A. Attanasi, G. Favi, F. Mantellini, G. Moscatelli, S. Santeusanio, Adv. Synth. Catal. 353 (2011) 1519-1524 doi: 10.1002/adsc.201100094

    20. [20]

      O.V. Larionov, A. DeMeijere, Angew. Chem. Int. Ed. 44 (2005) 5664-5667 doi: 10.1002/anie.200502140

    21. [21]

      M. Gao, C. He, H. Chen, et al. Angew. Chem. Int. Ed. 52 (2013) 6958-6961 doi: 10.1002/anie.201302604

    22. [22]

      J. Liu, Z. Fang, Q. Zhang, Q. Liu, X. Bi, Angew. Chem. Int. Ed. 52 (2013) 6953-6957 doi: 10.1002/anie.201302024

    23. [23]

      D. Zhao, S. Vsquez-Céspedes, F. Glorius, Angew. Chem. Int. Ed. 54 (2015) 1657-1661 doi: 10.1002/anie.201410342

    24. [24]

      F. Kallmeier, B. Dudziec, T. Irrgang, R. Kempe, Angew. Chem. Int. Ed. 56 (2017) 7261-7265 doi: 10.1002/anie.201702543

    25. [25]

      J. Xu, A.P. Green, N.J. Turner, Angew. Chem. Int. Ed. 57 (2018) 16760-16763 doi: 10.1002/anie.201810555

    26. [26]

      G.J. Mei, X. Tang, Y. Tasdan, Y. Lu, Angew. Chem. Int. Ed. 59 (2020) 648-652 doi: 10.1002/anie.201911686

    27. [27]

      S. Kamijo, C. Kanazawa, Y. Yamamoto, J. Am. Chem. Soc. 127 (2005) 9260-9266 doi: 10.1021/ja051875m

    28. [28]

      J.Y. Liao, P.L. Shao, Y. Zhao, J. Am. Chem. Soc. 137 (2015) 628-631 doi: 10.1021/ja511895q

    29. [29]

      G.M. Torres, J.S. Quesnel, D. Bijou, B.A. Arndtsen, J. Am. Chem. Soc. 138 (2016) 7315-7324 doi: 10.1021/jacs.6b02314

    30. [30]

      O.A. Attanasi, L. DeCrescentini, G. Favi, J. Org. Chem. 69 (2004) 2686-2692 doi: 10.1021/jo0349072

    31. [31]

      S. Michlik, R. Kempe, Nat. Chem. 5 (2013) 140-144 doi: 10.1038/nchem.1547

    32. [32]

      L.W. Qi, J.H. Mao, J. Zhang, B. Tan, Nat. Chem. 10 (2018) 58-64 doi: 10.1038/nchem.2866

    33. [33]

      R.R. Addada, V.R. Regalla, M.R. Vajja, V.N. Vema, V. R. Anna, Tetrahedron Lett. 57 (2016) 2838-2841 doi: 10.1016/j.tetlet.2016.05.025

    34. [34]

      J. Ke, C. He, H. Liu, M. Li, A. Lei, Chem. Commun. 49 (2013) 7549-7551 doi: 10.1039/c3cc43682a

    35. [35]

      S. Zhang, Y. Ma, J. Lan, F. Song, J. You, Org. Biomol. Chem. 13 (2015) 5867-5870 doi: 10.1039/C5OB00599J

    36. [36]

      C. He, S. Guo, J. Ke, et al., J. Am. Chem. Soc. 134 (2012) 5766-5769 doi: 10.1021/ja301153k

    37. [37]

      J.N. Zhu, L.L. Chen, R.X. Zhou, et al., Org. Lett. 19 (2017) 6044-6047 doi: 10.1021/acs.orglett.7b02670

    38. [38]

      X. Wu, P. Zhao, X. Geng, et al., Org. Lett. 20 (2018) 688-691 doi: 10.1021/acs.orglett.7b03821

    39. [39]

      Y. Nishibayashi, M. Yoshikawa, Y. Inada, et al., Angew. Chem. Int. Ed. 42 (2003) 2681-2684 doi: 10.1002/anie.200351170

    40. [40]

      H.C. Chiu, I.A. Tonks, Angew. Chem. Int. Ed. 57 (2018) 6090-6094 doi: 10.1002/anie.201800595

    41. [41]

      Q.W. Gui, X. He, W. Wang, et al., Green Chem. 22 (2020) 118-122 doi: 10.1039/c9gc02657f

    42. [42]

      M. Zhang, X. Fang, H. Neumann, M. Beller, J. Am. Chem. Soc. 135 (2013) 11384-11388 doi: 10.1021/ja406666r

    43. [43]

      Z.W. Davis-Gilbert, X. Wen, J.D. Goodpaster, I.A. Tonks, J. Am. Chem. Soc. 140 (2018) 7267-7281 doi: 10.1021/jacs.8b03546

    44. [44]

      K. Kawakita, E.P. Beaumier, Y. Kakiuchi, et al., J. Am. Chem. Soc. 141 (2019) 4194-4198 doi: 10.1021/jacs.8b13390

    45. [45]

      Z.W. Gilbert, R.J. Hue, I.A. Tonks, Nat. Chem. 8 (2016) 63-68 doi: 10.1038/nchem.2386

    46. [46]

      W. Liu, H. Jiang, L. Huang, Org. Lett. 12 (2010) 321-315

    47. [47]

      Q.W. Gui, F. Teng, S.N. Ying, Chin. Chem. Lett. 31 (2020) 3241-3244 doi: 10.1016/j.cclet.2020.07.017

    48. [48]

      X. Xin, D. Wang, X. Li, B. Wan, Angew. Chem. Int. Ed. 51 (2012) 1693-1697 doi: 10.1002/anie.201108144

    49. [49]

      L. Huang, Y. Cai, C. Zheng, L.D. Dai, S.L. You, Angew. Chem. Int. Ed. 56 (2017) 10545-10548 doi: 10.1002/anie.201705068

    50. [50]

      V. Estévez, M. Villacampa, J. C. Menéndez, Chem. Soc. Rev. 39 (2010) 4402-4421 doi: 10.1039/b917644f

    51. [51]

      V. Estévez, M. Villacampa, J. C. Menéndez, Chem. Soc. Rev. 43 (2014) 4633-4657 doi: 10.1039/C3CS60015G

    52. [52]

      X. Chen, Ran Zhao, Z. Liu, et al., Chin. Chem. Lett. 32 (2021) 2305-2308 doi: 10.1016/j.cclet.2021.02.021

    53. [53]

      W. Wang, S. Huang, S. Yan, et al., Chin. J. Chem. 38 (2020) 445-448 doi: 10.1002/cjoc.201900556

    54. [54]

      L. Zhang, J. Sun, S.A. Kozmin, Adv. Synth. Catal. 348 (2006) 2271-2296 doi: 10.1002/adsc.200600368

    55. [55]

      A. Fürstner, P.W. Davies, Angew. Chem. Int. Ed. 46 (2007) 3410-3449 doi: 10.1002/anie.200604335

    56. [56]

      A.S.K. Hashmi, M. Rudolph, Chem. Soc. Rev. 37 (2008) 1766-1775 doi: 10.1039/b615629k

    57. [57]

      D.J. Gorin, B.D. Sherry, F.D. Toste, Chem. Rev. 108 (2008) 3351-3378 doi: 10.1021/cr068430g

    58. [58]

      E. Jiménez-Núñez, A.M. Echavarren, Chem. Rev. 108 (2008) 3326-3350 doi: 10.1021/cr0684319

    59. [59]

      N.T. Patil, Y. Yamamoto, Chem. Rev. 108 (2008) 3395-3442 doi: 10.1021/cr050041j

    60. [60]

      S.M.A. Sohel, R.S. Liu, Chem. Soc. Rev. 38 (2009) 2269-2281 doi: 10.1039/b807499m

    61. [61]

      A.S.K. Hashmi, Angew. Chem. Int. Ed. 2010, 49, 5232-5241 doi: 10.1002/anie.200907078

    62. [62]

      M. Rudolph, A.S.K. Hashmi, Chem. Soc. Rev. 41 (2012) 2448-2462 doi: 10.1039/C1CS15279C

    63. [63]

      F. Wei, C. Song, Y. Ma, et al., Sci. Bull. 60 (2015) 1479-1492 doi: 10.1007/s11434-015-0874-0

    64. [64]

      R. Dorel, A.M. Echavarren, Chem. Rev. 115 (2015) 9028-9072 doi: 10.1021/cr500691k

    65. [65]

      L. Liu, J. Zhang, Chem. Soc. Rev. 45 (2016) 506-516 doi: 10.1039/C5CS00821B

    66. [66]

      C. Shu, L. Li, T.D. Tan, D.Q. Yuan, L.W. Ye, Sci. Bull. 62 (2017) 352-357 doi: 10.1016/j.scib.2017.01.016

    67. [67]

      P.C. Zhang, Y.L. Li, J. He, et al., Nat. Commun. 12 (2021) 4609 doi: 10.1038/s41467-021-24678-5

    68. [68]

      Z. Yu, B. Ma, M. Chen, et al., J. Am. Chem. Soc. 136 (2014) 6904-6907 doi: 10.1021/ja503163k

    69. [69]

      C. Wang, G. Xu, Y. Shao, S. Tang, J. Sun, Org. Lett. 22 (2020) 5990-5994 doi: 10.1021/acs.orglett.0c02083

    70. [70]

      Y. Xu, J. Sun, Org. Lett. 23 (2021) 853-857 doi: 10.1021/acs.orglett.0c04090

    71. [71]

      X. Di, Y. Wang, L. Wu, et al., Org. Lett. 21 (2019) 3018-3022 doi: 10.1021/acs.orglett.9b00537

    72. [72]

      56S. Zhang, B. Cheng, S. Wang, et al., Org. Lett. 19 (2017) 1072-7075 doi: 10.1021/acs.orglett.7b00090

    73. [73]

      M. Liang, S. Zhang, J. Jia, et al., Org. Lett. 19 (2017) 2526-2529 doi: 10.1021/acs.orglett.7b00804

    74. [74]

      Q, Teng, J. Qi, L. Zhou, Z. Xu, C.H. Tung, Org. Chem. Front. 5 (2018) 990-993 doi: 10.1039/C7QO01005B

    75. [75]

      X. Wang, S. Dong, Z. Yao, et al., Org. Lett. 16 (2014) 22-25 doi: 10.1021/ol4033286

    76. [76]

      J. Li, L. Lin, B. Hu, et al., Angew. Chem. Int. Ed. 55 (2016) 6075-6078 doi: 10.1002/anie.201601701

    77. [77]

      S. Ge, W. Cao, T. Kang, et al., Angew. Chem. Int. Ed. 58 (2019) 4017-4021 doi: 10.1002/anie.201812842

    78. [78]

      J. Gong, Q. Wan, Q. Kang, Adv. Synth. Catal. 360 (2018) 4031-403 doi: 10.1002/adsc.201800492

    79. [79]

      S. Witzel, A. S. K. Hashmi, J. Xie. Chem. Rev. 121 (2021) 8868-8925 doi: 10.1021/acs.chemrev.0c00841

    80. [80]

      W. Wang, C. L. Ji, K. Liu, et al. Chem. Soc. Rev. 50 (2021) 1874-1912 doi: 10.1039/d0cs00254b

  • Figure 1  Representative pyrrole-containing natural products and pharmaceuticals.

    Scheme 1  Gold-catalyzed cycloisomerization/cycloaddition cascade leading to polycycles.

    Scheme 2  Initial formation of the unexpected pyrrole 3a and crystal structure of 3d.

    Scheme 3  Scope of gold-catalyzed cascade reaction to the tetrasubstituted pyrroles.

    Scheme 4  Control experiments.

    Scheme 5  Proposed mechanism.

    Scheme 6  Synthetic elaborations of product.

    Table 1.  Reaction condition optimization.a

    下载: 导出CSV
  • 加载中
计量
  • PDF下载量:  3
  • 文章访问数:  826
  • HTML全文浏览量:  56
文章相关
  • 发布日期:  2023-01-15
  • 收稿日期:  2022-01-29
  • 接受日期:  2022-05-02
  • 修回日期:  2022-04-27
  • 网络出版日期:  2022-05-08
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章