A facile access to mono-C-alkynylated-o-carboranes from o-carboranes and arylsulfonylacetylenes

Mengyang Bai Guanyu Tao Zhenxing Liu Lili Wang Zheng Duan

Citation:  Mengyang Bai, Guanyu Tao, Zhenxing Liu, Lili Wang, Zheng Duan. A facile access to mono-C-alkynylated-o-carboranes from o-carboranes and arylsulfonylacetylenes[J]. Chinese Chemical Letters, 2022, 33(1): 201-204. doi: 10.1016/j.cclet.2021.05.062 shu

A facile access to mono-C-alkynylated-o-carboranes from o-carboranes and arylsulfonylacetylenes

English

  • o-Carborane is an electron-deficient icosahedral boron cluster compound of formula C2B10H12, in which two carbon atoms are adjacent to each other. o-Carborane has 26 delocalized valence electrons, exhibits special three-dimensional aromaticity, and extraordinary chemical and thermal stability [1, 2]. The different electronegativity between carbon and boron makes the C-H bond of o-carboranes partially acidic, which can work as a useful reaction site to obtain functionalized o-carboranes. During the past few decades, o-carboranes and their derivatives have broad applications in many fields [3-19]. Among them, some C-alkynyl-o-carboranes have special luminochromism and can be used in optoelectronic functional materials as electron-accepting motifs to tune the LUMO and HOMO energy levels [20-25]. Some of them have remarkable aggregation-induced emission (AIE) property and/or stimuli-responsivity and/or environment-sensitivity [26-28] with potential for application in novel functional materials. In addition, alkynyl groups are fundamental structural units in organic synthesis, and can be easily further derivatized [29-33]. Thus, the synthesis and performance of C-alkynyl-o-carboranes have received considerable attention.

    Currently, there are mainly three methods for the synthesis of C-alkynyl-o-carboranes. In 1964, Dupont and Hawthorne synthesized C-alkynyl-o-carboranes from decaborane and corresponding diynes for the first time (Scheme 1a) [34, 35]. In 1973, Hawthorne modified the method [36, 37]. In 1976, Zakharkin and coworkers prepared C-alkynyl-o-carboranes by the reaction of bromoalkynes with 1-Cu-o-C2B10H11 to give C-alkynyl-o-carboranes in moderate yields. 1-Cu-o-C2B10H11 was obtained from the corresponding 1-carboranyllithium and 1.25 equiv. of CuCl in a THF-ether solution (Scheme 1b) [38, 39]. In 2013, Nie and co-workers reported the cross-coupling of 1-Cu-o-C2B10H11 and Cu-CC-R to give C-alkynyl-o-carboranes with more excess amount of n-BuLi and CuCl (4 equiv. respectively, Scheme 1b) [40]. For a long period of time, C-alkynyl-o-carboranes were synthesized by these methods, the use of hypertoxic decaborane and diynes or stochiometric amounts of transition-metal salts encumbers their broader applications. Very recently, Xie and coworkers reported a very efficient approach to synthesize C-alkynyl-o-carboranes by the reaction of iodocarboranes and terminal alkynes in the presence of base under UV-light (Scheme 1c) [41]. However, this method is more suitable for o-carborane with substituents such as methyl on the ortho position. Until now, there are only a few reported mono-C-alkynyl substituted o-carboranes and the methods for synthesizing those mono-C-functional carboranes are still very limited. Therefore, it is of great significance to develop simple and efficient methods to synthesize mono-C-alkynyl-o-carboranes.

    Scheme 1

    Scheme 1.  Synthesis of C-alkynyl-o-carboranes.

    Sulfones are important intermediates in synthetic applications due to their strong electron-withdrawing property. Alkynyl sulfones have broad applications in the alkynylation and other fields including building complex organic molecules or naturally occurring products [42-47]. They could be facilely obtained from varied synthetic methods [42, 48-52]. In 2012, García Ruano's group reported a strategy that acetylenic sulfones were used as alkynylating reagents for the construction of the CAr-Csp bonds [53-55]. Inspired by these results, we wonder if arylacetylenic sulfones could be used to synthesize mono-C-alkynyl-o-carboranes. It should be noted that the carbon of o-carborane is sp hybridized, and the alkynylation of Csp with acetylenic sulfones is unknown. Herein, we wish to report our findings toward the construction of various mono-C-alkynyl-o-carboranes from o-carboranyllithiums and arylacetylenic sulfones (Scheme 1d).

    The starting arylacetylenic sulfones were synthesized according to a modified literature's procedure [48-52]. At the outset of our studies, o-carborane 1a and phenylethynyl sulfone 2a were chosen as model substrates to optimize the reaction conditions (Table 1). Initially, n-BuLi (1.2 equiv.) was added dropwise to o-carborane 1a in THF at 0 ℃, and the reaction mixture was stirred for an hour. Then phenylethynyl sulfone 2a (1 equiv.) was added and the reaction mixture was stirred for another hour at −78 ℃, the desirable product 3a was obtained with an isolated yield of 12% and some 1a was recovered (Table 1, entry 1). When the reaction temperature at the second step was kept at 0 ℃, the reaction can be finished within 2 h also, but the isolated yield of 3a is only 23% (Table 1, entry 2). If 2 equiv. of 2a was used, the reaction can be finished in 2 h also, and the yield of 3a is up to 57% (Table 1, entry 3), Adding 3 equiv. of 2a did not improve the yield and the reaction was worse when it was run at room temperature (Table 1, entries 4 and 5). At last, solvent effects on the reaction were studied, dimethyl ether (DME) and Et2O can also give comparable yields (Table 1, entries 6 and 7).

    Table 1

    Table 1.  Optimization of the reaction conditions for the synthesis of 3aa.
    DownLoad: CSV

    After establishing the optimized conditions (Table 1, entry 3), we examined the substrate scope and limitation of this alkynylation reaction and the results are summarized in Scheme 2. Gratifyingly, a variety of arylacetylenic sulfones 2a-2n were smoothly coupled to o-carborane 1a, delivering the corresponding mono-C-alkynyl-o-carboranes 3a-3n in moderate yields. This reaction tolerated a wide variety of functional groups, such as Me or Ph, electron-donating groups OMe, NPh2 or electron-withdrawing groups F, Cl and CF3. Moreover, the electronic properties of the substituents have no significant effect on the products yield. The positions of substituents on the Phenyl ring have no obvious impact on the yield also. In addition, alkyne with heteroaryl was compatible with this reaction, affording the product in a relatively lower yield (3n, 32%). The obtained products 3a3n were characterized by 1H NMR, 13C NMR, 11B NMR and HRMS (Supporting information).

    Scheme 2

    Scheme 2.  Synthesis of mono-C-alkynyl-o-carboranes.

    1, 2-Difunctionalized o-carboranes have some unique photoelectric properties [56-60]. After successful preparation of a variety of mono-C-alkynyl-o-carboranes, we turned our attention to synthesize 1, 2-difunctionalized o-carboranes. Unfortunately, the attempt to synthesize the bisalkynylation compound under the similar method was failed. But the alkylation and iodination reactions proceeded smoothly and provided the corresponding difuncationalized o-carboranes 4a and 4b and C-alkynyl-C'-iodocarborane 4c in 65%−72% yields (Scheme 3). Even iodoalkane bearing the hindered isopropyl group proved to be effective for furnishing the product 4b in 65% yield. The further derivatization reaction of C-I in compound 4c and applications of the new mono-C-alkynyl-o-carboranes are currently in progress in our laboratory.

    Scheme 3

    Scheme 3.  Synthesis of 1, 2-difunctionalized o-carboranes.

    To investigate the utility of this synthetic method, methyl, ethyl and isopropyl substituted o-carboranes were synthesized according the literature [61]. When R1 is methyl or ethyl or isopropyl, 4d, 4a and 4b were obtained in yields of 51%, 61% and 67% respectively (Scheme 4). It demonstrates the new synthetic method is applicable with o-substituted o-carboranes also.

    Scheme 4

    Scheme 4.  Ortho-substituted o-carborane alkynyl functionali-zation.

    In summary, a facile synthetic route to mono-C-alkynyl-o-carboranes from o-carboranes and arylsulfonylacetylenes was developed. This new method tolerates a wide variety of functional groups, and the process occurs at mild conditions in one-pot procedure with short reaction time. The obtained mono-C-alkynyl-o-carboranes can be further derivatized to synthesize 1, 2-difunctionalized o-carboranes. This work provides a very useful tool for the functionalization and practical applications of o-carboranes.

    The authors declare that there are no conflicts of interest.

    We are grateful for financial support from the National Natural Science Foundation of China (Nos. 21672193, 21272218), the Key Scientific and Technological Project of Henan Province (No. 202102310327), the Ministry of Industry and Information Technology (No. Z135060009002), the Postdoctoral Research Grant in Henan Province (No. 001803004), the Programme of Introducing Talents of Discipline to Universities (111 Project, No. D20003) and Zhengzhou University of China.

    Supplementary material associated with this article can be found, in the online version, at doi:10.1016/j.cclet.2021.05.062.


    1. [1]

      R.N. Grimes, Carboranes, 3rd, Academic Press, Amsterdam, 2016.

    2. [2]

      M.F. Hawthorne, Z. Zheng, Acc. Chem. Res. 30(1997) 267-276. doi: 10.1021/ar9501479

    3. [3]

      Q.Y. Wang, J. Wang, S. Wang, et al., J. Am. Chem. Soc. 142(2020) 12010-12014. doi: 10.1021/jacs.0c04638

    4. [4]

      M. Scholz, E. Hey-Hawkins, Chem. Rev. 111(2011) 7035-7062. doi: 10.1021/cr200038x

    5. [5]

      D. Tu, P. Leong, S. Guo, et al., Angew. Chem. Int. Ed. 56(2017) 11370-11374. doi: 10.1002/anie.201703862

    6. [6]

      M. Gon, K. Tanaka, Y. Chujo, Polym. J. 50(2018) 109-126. doi: 10.1038/pj.2017.56

    7. [7]

      J. Guo, D. Liu, J. Zhang, et al., Chem. Commun. 51(2015) 12004-12007. doi: 10.1039/C5CC03608A

    8. [8]

      J. Zhang, K. Liu, Z. Liu, et al., ACS Appl. Mater. Interfaces. 13(2021) 5625-5633. doi: 10.1021/acsami.0c21424

    9. [9]

      X. Wu, J. Guo, Y. Quan, et al., J. Mater. Chem. C 6(2018) 4140-4149. doi: 10.1039/C8TC00380G

    10. [10]

      J. Zhang, C. Tang, Z. Xie, Chem. Sci. 11(2020) 9925-9929. doi: 10.1039/D0SC04465B

    11. [11]

      J.A. Dupont, M.F. Hawthorne, J. Am. Chem. Soc. 86(1964) 1643. doi: 10.1021/ja01062a042

    12. [12]

      L.I. Zakharkin, A.I. Kovredov, Russ. Chem. Bull. 25(1976) 1593. doi: 10.1007/BF00920867

    13. [13]

      D. Bian, Y. Nie, J. Miao, Y. Wang, Z. Zhang, Chin. J. Org. Chem. 33(2013) 1774-1781. doi: 10.6023/cjoc201302007

    14. [14]

      H. Ni, Z. Lu, Z. Xie, J. Am. Chem. Soc. 142(2020) 18661-18667. doi: 10.1021/jacs.0c08652

    15. [15]

      M.A. Guerrero-Robles, M.A. Vilchis-Reyes, E.M. Ramos-Rivera, C. Alvarado, ChemistrySelect. 4(2019) 13698-13708. doi: 10.1002/slct.201903728

    16. [16]

      J. Meesin, P. Katrun, C. Pareseecharoen, et al., J. Org. Chem. 81(2016) 2744-2752. doi: 10.1021/acs.joc.5b02810

    17. [17]

      J.L. García Ruano, J. Alemán, L. Marzo, et al., Angew. Chem. Int. Ed. 51(2012) 2712-2716. doi: 10.1002/anie.201107821

    18. [18]

      H. Naito, K. Nishino, Y. Morisaki, K. Tanaka, Y. Chujo, Chem. Asian J. 12(2017) 2134-2138. doi: 10.1002/asia.201700815

    19. [19]

      F.A. Gomez, S.E. Johnson, M.F. Hawthorne, J. Am. Chem. Soc. 113(1991) 5915-5917. doi: 10.1021/ja00015a086

    20. [20]

      N.S. Hosmane, Boron Science: New Technologies and Application, CRC Press, Boca Raton, FL, 2011.

    21. [21]

      A. Kataki-Anastasakou, J.C. Axtell, S. Hernandez, et al., J. Am. Chem. Soc. 142(2020) 20513-20518. doi: 10.1021/jacs.0c09361

    22. [22]

      X. Yang, Y. Zhang, B. Zhang, et al., J. Mater. Chem. C 8(2020) 16326-16332. doi: 10.1039/D0TC04603E

    23. [23]

      A.R. Popescu, F. Teixidor, C. Viñas, Coord. Chem. Rev. 269(2014) 54-84. doi: 10.1016/j.ccr.2014.02.016

    24. [24]

      J.F. Valliant, K.J. Guenther, A.S. King, et al., Coord. Chem. Rev. 232(2002) 173-230. doi: 10.1016/S0010-8545(02)00087-5

    25. [25]

      C. Viñas, R. Núñez, I. Bennour, F. Teixidor, Curr. Med. Chem. 26(2019) 5036-5076. doi: 10.2174/0929867326666190603123838

    26. [26]

      X. Yang, B. Zhang, S. Zhang, et al., Org. Lett. 21(2019) 8285-8289. doi: 10.1021/acs.orglett.9b03047

    27. [27]

      G. Tao, F. Yang, L. Zhang, et al., Chin. Chem. Lett. 32(2021) 194-197. doi: 10.1016/j.cclet.2020.11.018

    28. [28]

      R. Núñez, M. Tarrés, A. Ferrer-Ugalde, F.F. de Biani, F. Teixidor, Chem. Rev. 116(2016) 14307-14378. doi: 10.1021/acs.chemrev.6b00198

    29. [29]

      R. Huang, H. Liu, K. Liu, et al., Anal. Chem. 91(2019) 14451-14457. doi: 10.1021/acs.analchem.9b03096

    30. [30]

      H. Naito, K. Nishino, Y. Morisaki, K. Tanaka, Y. Chujo, Angew. Chem. Int. Ed. 56(2017) 254-259. doi: 10.1002/anie.201609656

    31. [31]

      D. Tu, S. Cai, C. Fernandez, et al., Angew. Chem. Int. Ed. 58(2019) 9129-9133. doi: 10.1002/anie.201903920

    32. [32]

      X. Wei, M. Zhu, Z. Cheng, et al., Angew. Chem. Int. Ed. 58(2019) 3162-3166. doi: 10.1002/anie.201900283

    33. [33]

      S. Lee, J. Shin, D.H. Ko, W.S. Han, Chem. Commun. 56(2020) 12741-12744. doi: 10.1039/D0CC04684A

    34. [34]

      K. Nishino, H. Yamamoto, K. Tanaka, Y. Chujo, Asian J. Org. Chem. 6(2017) 1818-1822. doi: 10.1002/ajoc.201700390

    35. [35]

      J. Ochi, K. Tanaka, Y. Chujo, Eur. J. Org. Chem. (2019) 2984-2988 2019.

    36. [36]

      G.F. Jin, Y.J. Cho, K.R. Wee, et al., Dalton Trans. 44(2015) 2780-2787. doi: 10.1039/C4DT03123G

    37. [37]

      J. Ochi, K. Tanaka, Y. Chujo, Angew. Chem. Int. Ed. 59(2020) 9841-9855. doi: 10.1002/anie.201916666

    38. [38]

      K. Nishino, H. Yamamoto, J. Ochi, K. Tanaka, Y. Chujo, Chem. Asian J. 14(2019) 1577-1581. doi: 10.1002/asia.201900396

    39. [39]

      L.A. Smyshliaeva, M.V. Varaksin, E.I. Fomina, et al., Organometallics 39(2020) 3679-3688. doi: 10.1021/acs.organomet.0c00478

    40. [40]

      G. Tao, Z. Duan, F. Mathey, Org. Lett. 21(2019) 2273-2276. doi: 10.1021/acs.orglett.9b00562

    41. [41]

      Y. Quan, C. Tang, Z. Xie, Dalton Trans 48(2019) 7494-7498. doi: 10.1039/C9DT01140D

    42. [42]

      C. Tang, J. Zhang, J. Zhang, Z. Xie, J. Am. Chem. Soc. 140(2018) 16423-16427. doi: 10.1021/jacs.8b10270

    43. [43]

      T.E. Paxson, K.P. Callahan, M.F. Hawthorne, Inorg. Chem. 12(1973) 708-709. doi: 10.1021/ic50121a050

    44. [44]

      W. Clegg, R. Coult, M.A. Fox, et al., Polyhedron 12(1993) 2711-2717. doi: 10.1016/S0277-5387(00)80122-9

    45. [45]

      D.M. Murphy, D.M.P. Mingos, J.L. Haggitt, et al., J. Mater. Chem. 3(1993) 139-148. doi: 10.1039/jm9930300139

    46. [46]

      L.I. Zakharkin, A.I. Kovderov, V.A. Ol'shevskaya, Bull. Acad. Sci. USSR, Div. Chem. Sci. 35(1986) 1260-1266. doi: 10.1007/BF00956611

    47. [47]

      J. Li, H. Tian, M. Jiang, et al., Chem. Commun. 52(2016) 8862-8864. doi: 10.1039/C6CC04386K

    48. [48]

      T. Hoshikawa, S. Kamijo, M. Inoue, Org. Biomol. Chem. 11(2013) 164-169. doi: 10.1039/C2OB26785C

    49. [49]

      A. Schaffner, V. Darmency, P. Renaud, Angew. Chem. Int. Ed. 45(2006) 5847-5849. doi: 10.1002/anie.200601206

    50. [50]

      H. Todoroki, M. Iwatsu, D. Urabe, M. Inoue, J. Org. Chem. 79(2014) 8835-8849. doi: 10.1021/jo501666x

    51. [51]

      T. Takeda, M. Ando, T. Sugita, A. Tsubouchi, Org. Lett. 9(2007) 2875-2878. doi: 10.1021/ol071077w

    52. [52]

      P. Chen, C. Zhu, R. Zhu, W. Wu, H. Jiang, Chem. Asian J. 12(2017) 1875-1878. doi: 10.1002/asia.201700550

    53. [53]

      R.R. Tykwinski, B.L. Williamson, D.R. Fischer, P.J. Stang, A.M. Arif, J. Org. Chem. 58(1993) 5235-5237. doi: 10.1021/jo00071a037

    54. [54]

      C.C. Chen, J. Waser, Org. Lett. 17(2015) 736-739. doi: 10.1021/acs.orglett.5b00015

    55. [55]

      D.J. Hamnett, W.J. Moran, Org. Biomol. Chem. 12(2014) 4156-4162. doi: 10.1039/C4OB00556B

    56. [56]

      L. Marzo, I. Pérez, F. Yuste, J. Alemán, J.L.G. Ruano, Chem. Commun. 51(2015) 346-349. doi: 10.1039/C4CC07574A

    57. [57]

      C. Valderas, L. Marzo, M.C. de la Torre, et al., Chem. Eur. J 22(2016) 15645-15649. doi: 10.1002/chem.201603462

    58. [58]

      N. Shida, S. Owaki, H. Eguchi, et al., Dalton Trans. 49(2020) 12985-12989. doi: 10.1039/D0DT02205E

    59. [59]

      A.V. Marsh, M. Little, N.J. Cheetham, et al., Chem. Eur. J. 27(2021) 1970-1975. doi: 10.1002/chem.202004517

    60. [60]

      M. Kim, C.H. Ryu, J.H. Hong, et al., Inorg. Chem. Front. 7(2020) 4180-4189. doi: 10.1039/D0QI00915F

    61. [61]

      K.R. Wee, Y.J. Cho, J.K. Song, S.O. Kang, Angew. Chem. Int. Ed. 52(2013) 9682-9685. doi: 10.1002/anie.201304321

  • Scheme 1  Synthesis of C-alkynyl-o-carboranes.

    Scheme 2  Synthesis of mono-C-alkynyl-o-carboranes.

    Scheme 3  Synthesis of 1, 2-difunctionalized o-carboranes.

    Scheme 4  Ortho-substituted o-carborane alkynyl functionali-zation.

    Table 1.  Optimization of the reaction conditions for the synthesis of 3aa.

    下载: 导出CSV
  • 加载中
计量
  • PDF下载量:  11
  • 文章访问数:  791
  • HTML全文浏览量:  74
文章相关
  • 发布日期:  2022-01-15
  • 收稿日期:  2021-03-21
  • 接受日期:  2021-05-27
  • 修回日期:  2021-05-27
  • 网络出版日期:  2021-06-03
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章