Polypropylene non-woven supported fibronectin molecular imprinted calcium alginate/polyacrylamide hydrogel film for cell adhesion

Dun-Wan Zhu Zhuo Chen Kong-Yin Zhao Bo-Hong Kan Lan-Xia Liu Xia Dong Hai Wanga Chao Zhang Xi-Gang Leng Lin-Hua Zhang

Citation:  Dun-Wan Zhu, Zhuo Chen, Kong-Yin Zhao, Bo-Hong Kan, Lan-Xia Liu, Xia Dong, Hai Wanga, Chao Zhang, Xi-Gang Leng, Lin-Hua Zhang. Polypropylene non-woven supported fibronectin molecular imprinted calcium alginate/polyacrylamide hydrogel film for cell adhesion[J]. Chinese Chemical Letters, 2015, 26(6): 807-810. doi: 10.1016/j.cclet.2015.04.033 shu

Polypropylene non-woven supported fibronectin molecular imprinted calcium alginate/polyacrylamide hydrogel film for cell adhesion

    通讯作者: Lin-Hua Zhang,
  • 基金项目:

    The research is supported by the National Natural Science Foundation of China (Nos. 51103102, 51103180, 81100100, 31200674)  (Nos. 51103102, 51103180, 81100100, 31200674)

    Tianjin Municipal Natural Science Foundation (No. 15JCZDJC38300). (No. 15JCZDJC38300)

摘要: Fibronectin (FN) imprinted polypropylene (PP) non-woven supported calcium alginate/polyacrylamide hydrogel film (PP-s-CA/PAM MIP) was prepared using non-woven PP fiber as matrix, FN as template molecule, sodium alginate (SA) and acrylamide (AM) as functional monomers, via UV radiation-reduced polymerization. The PP-s-CA/PAM MIP exhibited an obvious improvement in terms of adsorption capacity for FN compared with non-imprinted polymer (NIP). The PP-s-CA/PAM MIP was successfully used for the culture of mouse fibroblast cells (L929) and the results showed that PP-s-CA/PAM MIP exhibited better cell adherence performance than the NIP did.

English

  • 
    1. [1] H.Y. Li, H. Li, B.J. Wang, et al., Synthesis and properties of poly(3-hydroxybutyrateco-3-hydroxyvalerate)/chitin nanocrystals composite scaffolds for tissue engineering, Chin. Chem. Lett. 25 (2014) 1635-1638.[1] H.Y. Li, H. Li, B.J. Wang, et al., Synthesis and properties of poly(3-hydroxybutyrateco-3-hydroxyvalerate)/chitin nanocrystals composite scaffolds for tissue engineering, Chin. Chem. Lett. 25 (2014) 1635-1638.

    2. [2] Q. Wei, T. Becherer, S. Angioletti-Uberti, et al., Protein interactions with polymer coatings and biomaterials, Angew. Chem. Int. Ed. 53 (2014) 8004-8031.[2] Q. Wei, T. Becherer, S. Angioletti-Uberti, et al., Protein interactions with polymer coatings and biomaterials, Angew. Chem. Int. Ed. 53 (2014) 8004-8031.

    3. [3] V. Ballotta, A.I.P.M. Smits, A. Driessen-Mol, C.V.C. Bouten, F.P.T. Baaijens, Synergistic protein secretion by mesenchymal stromal cells seeded in 3D scaffolds and circulating leukocytes in physiological flow, Biomaterials 35 (2014) 9100-9113.[3] V. Ballotta, A.I.P.M. Smits, A. Driessen-Mol, C.V.C. Bouten, F.P.T. Baaijens, Synergistic protein secretion by mesenchymal stromal cells seeded in 3D scaffolds and circulating leukocytes in physiological flow, Biomaterials 35 (2014) 9100-9113.

    4. [4] L. Qin, X.W. He, W. Zhang, W.Y. Li, Y.K. Zhang, Macroporous thermosensitive imprinted hydrogel for recognition of protein by metal coordinate interaction, Anal. Chem. 81 (2009) 7206-7216.[4] L. Qin, X.W. He, W. Zhang, W.Y. Li, Y.K. Zhang, Macroporous thermosensitive imprinted hydrogel for recognition of protein by metal coordinate interaction, Anal. Chem. 81 (2009) 7206-7216.

    5. [5] K.Y. Zhao, G.X. Cheng, J.J. Huang, X.G. Ying, Rebinding and recognition properties of protein-macromolecularly imprinted calcium phosphate/alginate hybrid polymer microspheres, React. Funct. Polym. 68 (2008) 732-741.[5] K.Y. Zhao, G.X. Cheng, J.J. Huang, X.G. Ying, Rebinding and recognition properties of protein-macromolecularly imprinted calcium phosphate/alginate hybrid polymer microspheres, React. Funct. Polym. 68 (2008) 732-741.

    6. [6] K.Y. Zhao, L.Z. Feng, H.Q. Lin, et al., Adsorption and photocatalytic degradation of methyl orange imprinted composite membranes using TiO2/calcium alginate hydrogel as matrix, Catal. Today 236 (2014) 127-134.[6] K.Y. Zhao, L.Z. Feng, H.Q. Lin, et al., Adsorption and photocatalytic degradation of methyl orange imprinted composite membranes using TiO2/calcium alginate hydrogel as matrix, Catal. Today 236 (2014) 127-134.

    7. [7] M.H. Lee, J.L. Thomas, H.Y. Tseng, et al., Sensing of digestive proteins in saliva with a molecularly imprinted poly (ethylene-co-vinyl alcohol) thin film coated quartz crystal microbalance sensor, ACS Appl. Mater. Interfaces 3 (2011) 3064-3071.[7] M.H. Lee, J.L. Thomas, H.Y. Tseng, et al., Sensing of digestive proteins in saliva with a molecularly imprinted poly (ethylene-co-vinyl alcohol) thin film coated quartz crystal microbalance sensor, ACS Appl. Mater. Interfaces 3 (2011) 3064-3071.

    8. [8] Y.Q. Yang, X.W. He, Y.Z. Wang, W.Y. Li, Y.K. Zhang, Epitope imprinted polymer coating CdTe quantum dots for specific recognition and direct fluorescent quantification of the target protein bovine serum albumin, Biosens. Bioelectron. 54 (2014) 266-272.[8] Y.Q. Yang, X.W. He, Y.Z. Wang, W.Y. Li, Y.K. Zhang, Epitope imprinted polymer coating CdTe quantum dots for specific recognition and direct fluorescent quantification of the target protein bovine serum albumin, Biosens. Bioelectron. 54 (2014) 266-272.

    9. [9] G.Q. Pan, Q.P. Guo, Y. Ma, H.L. Yang, B. Li, Thermo-responsive hydrogel layers imprinted with RGDS peptide: a system for harvesting cell sheets, Angew. Chem. Int. Ed. 52 (2013) 6907-6911.[9] G.Q. Pan, Q.P. Guo, Y. Ma, H.L. Yang, B. Li, Thermo-responsive hydrogel layers imprinted with RGDS peptide: a system for harvesting cell sheets, Angew. Chem. Int. Ed. 52 (2013) 6907-6911.

    10. [10] K. Fukazawa, K. Ishihara, Fabrication of a cell-adhesive protein imprinting surface with an artificial cell membrane structure for cell capturing, Biosens. Bioelectron. 25 (2009) 609-614.[10] K. Fukazawa, K. Ishihara, Fabrication of a cell-adhesive protein imprinting surface with an artificial cell membrane structure for cell capturing, Biosens. Bioelectron. 25 (2009) 609-614.

    11. [11] Q.L. Deng, Y.L. Li, L.H. Zhang, Y.K. Zhang, Molecularly imprinted macroporous monolithic materials for protein recognition, Chin. Chem. Lett. 22 (2011) 1351-1354.[11] Q.L. Deng, Y.L. Li, L.H. Zhang, Y.K. Zhang, Molecularly imprinted macroporous monolithic materials for protein recognition, Chin. Chem. Lett. 22 (2011) 1351-1354.

    12. [12] L. Qin, X.W. He, W. Zhang, W.Y. Li, Y.K. Zhang, Surface-modified polystyrene beads as photografting imprinted polymer matrix for chromatographic separation of proteins, J. Chromatogr. A 1216 (2009) 807-814.[12] L. Qin, X.W. He, W. Zhang, W.Y. Li, Y.K. Zhang, Surface-modified polystyrene beads as photografting imprinted polymer matrix for chromatographic separation of proteins, J. Chromatogr. A 1216 (2009) 807-814.

    13. [13] K.Y. Zhao, B.B. Lin, W.K. Cui, et al., Preparation and adsorption of bovine serum albumin-imprinted polyacrylamide hydrogel membrane grafted on non-woven polypropylene, Talanta 121 (2014) 256-262.[13] K.Y. Zhao, B.B. Lin, W.K. Cui, et al., Preparation and adsorption of bovine serum albumin-imprinted polyacrylamide hydrogel membrane grafted on non-woven polypropylene, Talanta 121 (2014) 256-262.

    14. [14] K.Y. Zhao, T. Chen, B.B. Lin, et al., Adsorption and recognition of protein molecular imprinted calcium alginate/polyacrylamide hydrogel film with good regeneration performance and high toughness, React. Funct. Polym. 87 (2015) 7-14.[14] K.Y. Zhao, T. Chen, B.B. Lin, et al., Adsorption and recognition of protein molecular imprinted calcium alginate/polyacrylamide hydrogel film with good regeneration performance and high toughness, React. Funct. Polym. 87 (2015) 7-14.

    15. [15] J.Y. Sun, X.H. Zhao, R.K. Widusha, et al., Highly stretchable and tough hydrogels, Nature 489 (2012) 133-136.[15] J.Y. Sun, X.H. Zhao, R.K. Widusha, et al., Highly stretchable and tough hydrogels, Nature 489 (2012) 133-136.

  • 加载中
计量
  • PDF下载量:  0
  • 文章访问数:  1204
  • HTML全文浏览量:  46
文章相关
  • 发布日期:  2015-05-05
  • 收稿日期:  2015-02-12
  • 网络出版日期:  2015-04-23
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章