A BODIPY analogue from the tautomerization of sodium 3-oxide BODIPY
-
关键词:
- Bodipy
- / Substitution reaction
- / Tautomerization
- / Sodium salt
English
A BODIPY analogue from the tautomerization of sodium 3-oxide BODIPY
-
Key words:
- Bodipy
- / Substitution reaction
- / Tautomerization
- / Sodium salt
-
-
-
[1] N. Boens, V. Leen, W. Dehaen, Fluorescent indicators based on BODIPY, Chem. Soc. Rev. 41 (2012) 1130-1172.[1] N. Boens, V. Leen, W. Dehaen, Fluorescent indicators based on BODIPY, Chem. Soc. Rev. 41 (2012) 1130-1172.
-
[2] A. Loudet, K. Burgess, BODIPY dyes and their derivatives: syntheses and spectroscopic properties, Chem. Rev. 107 (2007) 4891-4932.[2] A. Loudet, K. Burgess, BODIPY dyes and their derivatives: syntheses and spectroscopic properties, Chem. Rev. 107 (2007) 4891-4932.
-
[3] G. Ulrich, R. Ziessel, A. Harriman, The chemistry of fluorescent Bodipy dyes: versatility unsurpassed, Angew. Chem. Int. Ed. 47 (2008) 1184-1201.[3] G. Ulrich, R. Ziessel, A. Harriman, The chemistry of fluorescent Bodipy dyes: versatility unsurpassed, Angew. Chem. Int. Ed. 47 (2008) 1184-1201.
-
[4] A. Treibs, F.H. Kreuzer, Difluorboryl-Komplexe von di-und tripyrrylmethenen, Justus Liebigs Ann. Chem. 718 (1968) 208-223.[4] A. Treibs, F.H. Kreuzer, Difluorboryl-Komplexe von di-und tripyrrylmethenen, Justus Liebigs Ann. Chem. 718 (1968) 208-223.
-
[5] J. Ahrens, B. Böker, K. Brandhorst, M. Funk, M. Bröring, Sulfur-bridged BODIPY DYEmers, Chem. Eur. J. 19 (2013) 11382-11395.[5] J. Ahrens, B. Böker, K. Brandhorst, M. Funk, M. Bröring, Sulfur-bridged BODIPY DYEmers, Chem. Eur. J. 19 (2013) 11382-11395.
-
[6] T. Bura, R. Ziessel, Water-soluble phosphonate-substituted BODIPY derivatives with tunable emission channels, Org. Lett. 13 (2011) 3072-3075.[6] T. Bura, R. Ziessel, Water-soluble phosphonate-substituted BODIPY derivatives with tunable emission channels, Org. Lett. 13 (2011) 3072-3075.
-
[7] L. Jiao, C. Yu, M. Liu, et al., Synthesis and functionalization of asymmetrical benzofused BODIPY dyes, J. Org. Chem. 75 (2010) 6035-6038.[7] L. Jiao, C. Yu, M. Liu, et al., Synthesis and functionalization of asymmetrical benzofused BODIPY dyes, J. Org. Chem. 75 (2010) 6035-6038.
-
[8] S. Kolemen, Y. Cakmak, Z. Kostereli, E.U. Akkaya, Atropisomeric dyes: axial chirality in orthogonal BODIPY oligomers, Org. Lett. 16 (2014) 660-663.[8] S. Kolemen, Y. Cakmak, Z. Kostereli, E.U. Akkaya, Atropisomeric dyes: axial chirality in orthogonal BODIPY oligomers, Org. Lett. 16 (2014) 660-663.
-
[9] V. Leen, D. Miscoria, S. Yin, et al., 1,7-Disubstituted boron dipyrromethene (BODIPY) dyes: synthesis and spectroscopic properties, J. Org. Chem. 76 (2011) 8168-8176.[9] V. Leen, D. Miscoria, S. Yin, et al., 1,7-Disubstituted boron dipyrromethene (BODIPY) dyes: synthesis and spectroscopic properties, J. Org. Chem. 76 (2011) 8168-8176.
-
[10] Z. Li, Y. Chen, X. Lv, W.F. Fu, A tetraphenylethene-decorated BODIPY monomer/dimer with intense fluorescence in various matrices, New J. Chem. 37 (2013) 3755-3761.[10] Z. Li, Y. Chen, X. Lv, W.F. Fu, A tetraphenylethene-decorated BODIPY monomer/dimer with intense fluorescence in various matrices, New J. Chem. 37 (2013) 3755-3761.
-
[11] P.C. Shi, X.D. Jiang, R.N. Gao, Y.Y. Dou, W.L. Zhao, Synthesis and application of Vis/NIR dialkylaminophenylbuta-1,3-dienyl borondipyrromethene dyes, Chin. Chem. Lett. (2014), http://dx.doi.org/10.1016/j.cclet.2014.11.010.[11] P.C. Shi, X.D. Jiang, R.N. Gao, Y.Y. Dou, W.L. Zhao, Synthesis and application of Vis/NIR dialkylaminophenylbuta-1,3-dienyl borondipyrromethene dyes, Chin. Chem. Lett. (2014), http://dx.doi.org/10.1016/j.cclet.2014.11.010.
-
[12] O.A. Bozdemir, R. Guliyev, O. Buyukcakir, et al., Selective manipulation of ICT and PET processes in styryl-Bodipy derivatives: applications in molecular logic and fluorescence sensing of metal ions, J. Am. Chem. Soc. 132 (2010) 8029-8036.[12] O.A. Bozdemir, R. Guliyev, O. Buyukcakir, et al., Selective manipulation of ICT and PET processes in styryl-Bodipy derivatives: applications in molecular logic and fluorescence sensing of metal ions, J. Am. Chem. Soc. 132 (2010) 8029-8036.
-
[13] J.C.T. Carlson, L.G. Meimetis, S.A. Hilderbrand, R. Weissleder, BODIPY-tetrazine derivatives as superbright bioorthogonal turn-on probes, Angew. Chem. Int. Ed. 52 (2013) 6917-6920.[13] J.C.T. Carlson, L.G. Meimetis, S.A. Hilderbrand, R. Weissleder, BODIPY-tetrazine derivatives as superbright bioorthogonal turn-on probes, Angew. Chem. Int. Ed. 52 (2013) 6917-6920.
-
[14] M. Işık, R. Guliyev, S. Kolemen, et al., Designing an intracellular fluorescent probe for glutathione: two modulation sites for selective signal transduction, Org. Lett. 16 (2014) 3260-3263.[14] M. Işık, R. Guliyev, S. Kolemen, et al., Designing an intracellular fluorescent probe for glutathione: two modulation sites for selective signal transduction, Org. Lett. 16 (2014) 3260-3263.
-
[15] M. Isik, T. Ozdemir, I.S. Turan, S. Kolemen, E.U. Akkaya, Chromogenic and fluorogenic sensing of biological thiols in aqueous solutions using BODIPY-based reagents, Org. Lett. 15 (2013) 216-219.[15] M. Isik, T. Ozdemir, I.S. Turan, S. Kolemen, E.U. Akkaya, Chromogenic and fluorogenic sensing of biological thiols in aqueous solutions using BODIPY-based reagents, Org. Lett. 15 (2013) 216-219.
-
[16] P. Li, L. Fang, H. Zhou, et al., A new ratiometric fluorescent probe for detection of Fe2+ with high sensitivity and its intracellular imaging applications, Chem. Eur. J. 17 (2011) 10520-10523.[16] P. Li, L. Fang, H. Zhou, et al., A new ratiometric fluorescent probe for detection of Fe2+ with high sensitivity and its intracellular imaging applications, Chem. Eur. J. 17 (2011) 10520-10523.
-
[17] X. Lv, Y. Wang, S. Zhang, et al., A specific fluorescent probe for NO based on a new NO-binding group, Chem. Cummun. 50 (2014) 7499-7502.[17] X. Lv, Y. Wang, S. Zhang, et al., A specific fluorescent probe for NO based on a new NO-binding group, Chem. Cummun. 50 (2014) 7499-7502.
-
[18] B.W. Michel, A.R. Lippert, C.J. Chang, A reaction-based fluorescent probe for selective imaging of carbon monoxide in living cells using a palladium-mediated carbonylation, J. Am. Chem. Soc. 134 (2012) 15668-15671.[18] B.W. Michel, A.R. Lippert, C.J. Chang, A reaction-based fluorescent probe for selective imaging of carbon monoxide in living cells using a palladium-mediated carbonylation, J. Am. Chem. Soc. 134 (2012) 15668-15671.
-
[19] F. Wang, Z. Guo, X. Li, X. Li, C. Zhao, Development of a small molecule probe capable of discriminating cysteine, homocysteine, and glutathione with three distinct turn-on fluorescent outputs, Chem. Eur. J. 20 (2014) 11471-11478.[19] F. Wang, Z. Guo, X. Li, X. Li, C. Zhao, Development of a small molecule probe capable of discriminating cysteine, homocysteine, and glutathione with three distinct turn-on fluorescent outputs, Chem. Eur. J. 20 (2014) 11471-11478.
-
[20] H. Zhu, J. Fan, M. Li, et al., A "distorted-BODIPY"-based fluorescent probe for imaging of cellular viscosity in live cells, Chem. Eur. J. 20 (2014) 4691-4696.[20] H. Zhu, J. Fan, M. Li, et al., A "distorted-BODIPY"-based fluorescent probe for imaging of cellular viscosity in live cells, Chem. Eur. J. 20 (2014) 4691-4696.
-
[21] H. Zhu, J. Fan, J. Wang, H. Mu, X. Peng, An "enhanced PET"-based fluorescent probe with ultrasensitivity for imaging basal and elesclomol-induced HClO in cancer cells, J. Am. Chem. Soc. 136 (2014) 12820-12823.[21] H. Zhu, J. Fan, J. Wang, H. Mu, X. Peng, An "enhanced PET"-based fluorescent probe with ultrasensitivity for imaging basal and elesclomol-induced HClO in cancer cells, J. Am. Chem. Soc. 136 (2014) 12820-12823.
-
[22] B. Brizet, V. Goncalves, C. Bernhard, et al., DMAP-BODIPY alkynes: a convenient tool for labeling biomolecules for bimodal PET-optical imaging, Chem. Eur. J. 20 (2014) 12933-12944.[22] B. Brizet, V. Goncalves, C. Bernhard, et al., DMAP-BODIPY alkynes: a convenient tool for labeling biomolecules for bimodal PET-optical imaging, Chem. Eur. J. 20 (2014) 12933-12944.
-
[23] Y.Z. Chen, P.Z. Chen, H.Q. Peng, et al., Water-soluble, membrane-permeable organic fluorescent nanoparticles with large tunability in emission wavelengths and Stokes shifts, Chem. Cummun. 49 (2013) 5877-5879.[23] Y.Z. Chen, P.Z. Chen, H.Q. Peng, et al., Water-soluble, membrane-permeable organic fluorescent nanoparticles with large tunability in emission wavelengths and Stokes shifts, Chem. Cummun. 49 (2013) 5877-5879.
-
[24] S. Liu, D. Li, Z. Zhang, et al., Efficient synthesis of fluorescent-PET probes based on[18F]BODIPY dye, Chem. Cummun. 50 (2014) 7371-7373.[24] S. Liu, D. Li, Z. Zhang, et al., Efficient synthesis of fluorescent-PET probes based on[18F]BODIPY dye, Chem. Cummun. 50 (2014) 7371-7373.
-
[25] Y. Ni, L. Zeng, N.Y. Kang, et al., Meso-ester and carboxylic acid substituted BODIPYs with far-red and near-infrared emission for bioimaging applications, Chem. Eur. J. 20 (2014) 2301-2310.[25] Y. Ni, L. Zeng, N.Y. Kang, et al., Meso-ester and carboxylic acid substituted BODIPYs with far-red and near-infrared emission for bioimaging applications, Chem. Eur. J. 20 (2014) 2301-2310.
-
[26] X. Peng, J. Du, J. Fan, et al., A selective fluorescent sensor for imaging Cd2+ in living cells, J. Am. Chem. Soc. 129 (2007) 1500-1501.[26] X. Peng, J. Du, J. Fan, et al., A selective fluorescent sensor for imaging Cd2+ in living cells, J. Am. Chem. Soc. 129 (2007) 1500-1501.
-
[27] D. Wang, J. Fan, X. Gao, et al., Carboxyl BODIPY dyes from bicarboxylic anhydrides: one-pot preparation, spectral properties, photostability, and biolabeling, J. Org. Chem. 74 (2009) 7675-7683.[27] D. Wang, J. Fan, X. Gao, et al., Carboxyl BODIPY dyes from bicarboxylic anhydrides: one-pot preparation, spectral properties, photostability, and biolabeling, J. Org. Chem. 74 (2009) 7675-7683.
-
[28] S. Zhang, T. Wu, J. Fan, et al., A BODIPY-based fluorescent dye for mitochondria in living cells, with low cytotoxicity and high photostability, Org. Biomol. Chem. 11 (2013) 555-558.[28] S. Zhang, T. Wu, J. Fan, et al., A BODIPY-based fluorescent dye for mitochondria in living cells, with low cytotoxicity and high photostability, Org. Biomol. Chem. 11 (2013) 555-558.
-
[29] L. Wang, L.L. Li, H.L. Ma, H. Wang, Recent advances in biocompatible supramolecular assemblies for biomolecular detection and delivery, Chin. Chem. Lett. 24 (2013) 351-358.[29] L. Wang, L.L. Li, H.L. Ma, H. Wang, Recent advances in biocompatible supramolecular assemblies for biomolecular detection and delivery, Chin. Chem. Lett. 24 (2013) 351-358.
-
[30] L. Huang, X. Yu, W. Wu, J. Zhao, Styryl Bodipy-C60 dyads as efficient heavy-atomfree organic triplet photosensitizers, Org. Lett. 14 (2012) 2594-2597.[30] L. Huang, X. Yu, W. Wu, J. Zhao, Styryl Bodipy-C60 dyads as efficient heavy-atomfree organic triplet photosensitizers, Org. Lett. 14 (2012) 2594-2597.
-
[31] A. Kamkaew, S.H. Lim, H.B. Lee, et al., BODIPY dyes in photodynamic therapy, Chem. Soc. Rev. 42 (2013) 77-88.[31] A. Kamkaew, S.H. Lim, H.B. Lee, et al., BODIPY dyes in photodynamic therapy, Chem. Soc. Rev. 42 (2013) 77-88.
-
[32] T. Rohand, M. Baruah, W. Qin, N. Boens, W. Dehaen, Functionalisation of fluorescent BODIPY dyes by nucleophilic substitution, Chem. Cummun. (2006) 266-268.[32] T. Rohand, M. Baruah, W. Qin, N. Boens, W. Dehaen, Functionalisation of fluorescent BODIPY dyes by nucleophilic substitution, Chem. Cummun. (2006) 266-268.
-
[33] T. Rohand, W. Qin, N. Boens, W. Dehaen, Palladium-catalyzed coupling reactions for the functionalization of BODIPY dyes with fluorescence spanning the visible spectrum, Eur. J. Org. Chem. 2006 (2006) 4658-4663.[33] T. Rohand, W. Qin, N. Boens, W. Dehaen, Palladium-catalyzed coupling reactions for the functionalization of BODIPY dyes with fluorescence spanning the visible spectrum, Eur. J. Org. Chem. 2006 (2006) 4658-4663.
-
[34] L. Feng, H. Li, L.Y. Niu, et al., A fluorometric paper-based sensor array for the discrimination of heavy-metal ions, Talanta 108 (2013) 103-108.[34] L. Feng, H. Li, L.Y. Niu, et al., A fluorometric paper-based sensor array for the discrimination of heavy-metal ions, Talanta 108 (2013) 103-108.
-
[35] L.Y. Niu, Y.S. Guan, Y.Z. Chen, et al., BODIPY-based ratiometric fluorescent sensor for highly selective detection of glutathione over cysteine and homocysteine, J. Am. Chem. Soc. 134 (2012) 18928-18931.[35] L.Y. Niu, Y.S. Guan, Y.Z. Chen, et al., BODIPY-based ratiometric fluorescent sensor for highly selective detection of glutathione over cysteine and homocysteine, J. Am. Chem. Soc. 134 (2012) 18928-18931.
-
[36] L.Y. Niu, Y.S. Guan, Y.Z. Chen, et al., A turn-on fluorescent sensor for the discrimination of cystein from homocystein and glutathione, Chem. Cummun. 49 (2013) 1294-1296.[36] L.Y. Niu, Y.S. Guan, Y.Z. Chen, et al., A turn-on fluorescent sensor for the discrimination of cystein from homocystein and glutathione, Chem. Cummun. 49 (2013) 1294-1296.
-
[37] L.Y. Niu, H. Li, L. Feng, et al., BODIPY-based fluorometric sensor array for the highly sensitive identification of heavy-metal ions, Anal. Chim. Acta 775 (2013) 93-99.[37] L.Y. Niu, H. Li, L. Feng, et al., BODIPY-based fluorometric sensor array for the highly sensitive identification of heavy-metal ions, Anal. Chim. Acta 775 (2013) 93-99.
-
[38] Y. Zhang, H. Li, L.Y. Niu, et al., An SPE-assisted BODIPY fluorometric paper sensor for the highly selective and sensitive determination of Cd2+ in complex sample: rice, Analyst 139 (2014) 3146-3153.[38] Y. Zhang, H. Li, L.Y. Niu, et al., An SPE-assisted BODIPY fluorometric paper sensor for the highly selective and sensitive determination of Cd2+ in complex sample: rice, Analyst 139 (2014) 3146-3153.
-
[39] D. Kim, K. Yamamoto, K.H. Ahn, A BODIPY-based reactive probe for ratiometric fluorescence sensing of mercury ions, Tetrahedron 68 (2012) 5279-5282.[39] D. Kim, K. Yamamoto, K.H. Ahn, A BODIPY-based reactive probe for ratiometric fluorescence sensing of mercury ions, Tetrahedron 68 (2012) 5279-5282.
-
[40] J. Cao, C. Zhao, P. Feng, Y. Zhang, W. Zhu, A colorimetric and ratiometric NIR fluorescent turn-on fluoride chemodosimeter based on BODIPY derivatives: high selectivity via specific Si-O cleavage, RSC Adv. 2 (2012) 418-420.[40] J. Cao, C. Zhao, P. Feng, Y. Zhang, W. Zhu, A colorimetric and ratiometric NIR fluorescent turn-on fluoride chemodosimeter based on BODIPY derivatives: high selectivity via specific Si-O cleavage, RSC Adv. 2 (2012) 418-420.
-
[41] C. Zhao, P. Feng, J. Cao, et al., 6-Hydroxyindole-based borondipyrromethene: synthesis and spectroscopic studies, Org. Biomol. Chem. 10 (2012) 267-272.[41] C. Zhao, P. Feng, J. Cao, et al., 6-Hydroxyindole-based borondipyrromethene: synthesis and spectroscopic studies, Org. Biomol. Chem. 10 (2012) 267-272.
-
-
扫一扫看文章
计量
- PDF下载量: 0
- 文章访问数: 1317
- HTML全文浏览量: 42

下载: