Bioactive conformation analysis of anthranilic diamide insecticides: DFT-based potential energy surface scanning and 3D-QSAR investigations
English
Bioactive conformation analysis of anthranilic diamide insecticides: DFT-based potential energy surface scanning and 3D-QSAR investigations
-
-
-
[1] A. Jeanguenat, The story of a new insecticidal chemistry class: the diamides, Pest Manag. Sci. 69 (2013) 7-14.[1] A. Jeanguenat, The story of a new insecticidal chemistry class: the diamides, Pest Manag. Sci. 69 (2013) 7-14.
-
[2] T. Masaki, N. Yasokawa, S. Fujioka, et al., Quantitative relationship between insecticidal activity and Ca2+ pump stimulation by flubendiamide and its related compounds, J. Pestic. Sci. 34 (2009) 37-42.[2] T. Masaki, N. Yasokawa, S. Fujioka, et al., Quantitative relationship between insecticidal activity and Ca2+ pump stimulation by flubendiamide and its related compounds, J. Pestic. Sci. 34 (2009) 37-42.
-
[3] M. Tohnishi, H. Nakao, T. Furuya, et al., Flubendiamide, a novel insecticide highly active against lepidopterous insect pests, J. Pestic. Sci 30 (2005) 354-360.[3] M. Tohnishi, H. Nakao, T. Furuya, et al., Flubendiamide, a novel insecticide highly active against lepidopterous insect pests, J. Pestic. Sci 30 (2005) 354-360.
-
[4] A. Dinter, K.E. Brugger, N.M. Frost, M.D. Woodward, Chlorantraniliprole (Rynaxypyr): a novel DuPontTM insecticide with low toxicity and low risk for honey bees (Apis mellifera) and bumble bees (Bombus terre stris) providing excellent tools for uses in integrated pest management, Julius-Kühn-Archiv 423 (2010) 84-96.[4] A. Dinter, K.E. Brugger, N.M. Frost, M.D. Woodward, Chlorantraniliprole (Rynaxypyr): a novel DuPontTM insecticide with low toxicity and low risk for honey bees (Apis mellifera) and bumble bees (Bombus terre stris) providing excellent tools for uses in integrated pest management, Julius-Kühn-Archiv 423 (2010) 84-96.
-
[5] D. Cordova, E.A. Benner, M.D. Sacher, et al., Anthranilic diamides: a new class of insecticides with a novel mode of action, ryanodine receptor activation, Pestic. Biochem. Physiol. 84 (2006) 196-214.[5] D. Cordova, E.A. Benner, M.D. Sacher, et al., Anthranilic diamides: a new class of insecticides with a novel mode of action, ryanodine receptor activation, Pestic. Biochem. Physiol. 84 (2006) 196-214.
-
[6] D.B. Sattelle, D. Cordova, T.R. Cheek, Insect ryanodine receptors: molecular targets for novel pest control chemicals, Invert. Neurosci. 8 (2008) 107-119.[6] D.B. Sattelle, D. Cordova, T.R. Cheek, Insect ryanodine receptors: molecular targets for novel pest control chemicals, Invert. Neurosci. 8 (2008) 107-119.
-
[7] Y.B. Chen, J.L. Li, X.S. Shao, X.Y. Xu, Z. Li, Design, synthesis and insecticidal activity of novel anthranilic diamides with benzyl sulfide scaffold, Chin. Chem. Lett. 24 (2013) 673-676.[7] Y.B. Chen, J.L. Li, X.S. Shao, X.Y. Xu, Z. Li, Design, synthesis and insecticidal activity of novel anthranilic diamides with benzyl sulfide scaffold, Chin. Chem. Lett. 24 (2013) 673-676.
-
[8] D.A. Clark, G.P. Lahm, B.K. Smith, J.D. Barry, D.G. Clagg, Synthesis of insecticidal fluorinated anthranilic diamides, Bioorg. Med. Chem. 16 (2008) 3163-3170.[8] D.A. Clark, G.P. Lahm, B.K. Smith, J.D. Barry, D.G. Clagg, Synthesis of insecticidal fluorinated anthranilic diamides, Bioorg. Med. Chem. 16 (2008) 3163-3170.
-
[9] M. Luo, Q.C. Chen, J. Wang, et al., Novel chlorantraniliprole derivatives as potential insecticides and probe to chlorantraniliprole binding site on ryanodine receptor, Bioorg. Med. Chem. Lett. 24 (2014) 1987-1992.[9] M. Luo, Q.C. Chen, J. Wang, et al., Novel chlorantraniliprole derivatives as potential insecticides and probe to chlorantraniliprole binding site on ryanodine receptor, Bioorg. Med. Chem. Lett. 24 (2014) 1987-1992.
-
[10] J.J. Ou, X.K. Zhu, L. Wang, et al., Synthesis and bioactivity study of 2-acylaminosubstituted N0-benzylbenzohydrazide derivatives, J. Agric. Food Chem. 60 (2012) 10942-10951.[10] J.J. Ou, X.K. Zhu, L. Wang, et al., Synthesis and bioactivity study of 2-acylaminosubstituted N0-benzylbenzohydrazide derivatives, J. Agric. Food Chem. 60 (2012) 10942-10951.
-
[11] T.P. Selby, G.P. Lahm, T.M. Stevenson, et al., Discovery of cyantraniliprole, a potent and selective anthranilic diamide ryanodine receptor activator with cross-spectrum insecticidal activity, Bioorg. Med. Chem. Lett. 23 (2013) 6341-6345.[11] T.P. Selby, G.P. Lahm, T.M. Stevenson, et al., Discovery of cyantraniliprole, a potent and selective anthranilic diamide ryanodine receptor activator with cross-spectrum insecticidal activity, Bioorg. Med. Chem. Lett. 23 (2013) 6341-6345.
-
[12] B.L. Wang, H.W. Zhu, Y. Ma, et al., Synthesis, insecticidal activities, and SAR studies of novel pyridylpyrazole acid derivatives based on amide bridge modification of anthranilic diamide insecticides, J. Agric. Food Chem. 61 (2013) 5483-5493.[12] B.L. Wang, H.W. Zhu, Y. Ma, et al., Synthesis, insecticidal activities, and SAR studies of novel pyridylpyrazole acid derivatives based on amide bridge modification of anthranilic diamide insecticides, J. Agric. Food Chem. 61 (2013) 5483-5493.
-
[13] J. Wu, B.A. Song, D.Y. Hu, M. Yue, S. Yang, Design, synthesis and insecticidal activities of novel pyrazole amides containing hydrazone substructures, Pest Manag. Sci. 68 (2012) 801-810.[13] J. Wu, B.A. Song, D.Y. Hu, M. Yue, S. Yang, Design, synthesis and insecticidal activities of novel pyrazole amides containing hydrazone substructures, Pest Manag. Sci. 68 (2012) 801-810.
-
[14] J.F. Zhang, J.Y. Xu, B.L. Wang, et al., Synthesis and insecticidal activities of novel anthranilic diamides containing acylthiourea and acylurea, J. Agric. Food Chem. 60 (2012) 7565-7572.[14] J.F. Zhang, J.Y. Xu, B.L. Wang, et al., Synthesis and insecticidal activities of novel anthranilic diamides containing acylthiourea and acylurea, J. Agric. Food Chem. 60 (2012) 7565-7572.
-
[15] Y.Y. Zhou, Q. Feng, F.J. Di, et al., Synthesis and insecticidal activities of 2,3-dihydroquinazolin-4(1H)-one derivatives targeting calcium channel, Bioorg. Med. Chem. 21 (2013) 4968-4975.[15] Y.Y. Zhou, Q. Feng, F.J. Di, et al., Synthesis and insecticidal activities of 2,3-dihydroquinazolin-4(1H)-one derivatives targeting calcium channel, Bioorg. Med. Chem. 21 (2013) 4968-4975.
-
[16] A.K. Isaacs, S.Z. Qi, R. Sarpong, J.E. Casida, Insect ryanodine receptor: distinct but coupled insecticide binding sites for [N-C3H3]chlorantraniliprole, flubendiamide, and [3H]ryanodine, Chem. Res. Toxicol. 25 (2012) 1571-1573.[16] A.K. Isaacs, S.Z. Qi, R. Sarpong, J.E. Casida, Insect ryanodine receptor: distinct but coupled insecticide binding sites for [N-C3H3]chlorantraniliprole, flubendiamide, and [3H]ryanodine, Chem. Res. Toxicol. 25 (2012) 1571-1573.
-
[17] G.P. Lahm, D. Cordova, J.D. Barry, New and selective ryanodine receptor activators for insect control, Bioorg. Med. Chem. 17 (2009) 4127-4133.[17] G.P. Lahm, D. Cordova, J.D. Barry, New and selective ryanodine receptor activators for insect control, Bioorg. Med. Chem. 17 (2009) 4127-4133.
-
[18] S.Z. Qi, J.E. Casida, Species differences in chlorantraniliprole and flubendiamide insecticide binding sites in the ryanodine receptor, Pestic. Biochem. Physiol. 107 (2013) 321-326.[18] S.Z. Qi, J.E. Casida, Species differences in chlorantraniliprole and flubendiamide insecticide binding sites in the ryanodine receptor, Pestic. Biochem. Physiol. 107 (2013) 321-326.
-
[19] S.R. LaPlante, H. Nar, C.T. Lemke, et al., Ligand bioactive conformation plays a critical role in the design of drugs that target the hepatitis C virus NS3 protease, J. Med. Chem. 57 (2014) 1777-1789.[19] S.R. LaPlante, H. Nar, C.T. Lemke, et al., Ligand bioactive conformation plays a critical role in the design of drugs that target the hepatitis C virus NS3 protease, J. Med. Chem. 57 (2014) 1777-1789.
-
[20] I.I. Serysheva, E.V. Orlova, W. Chiu, et al., Electron cryomicroscopy and angular reconstitution used to visualize the skeletal muscle calcium release channel, Nat. Struct. Biol. 2 (1995) 18-24.[20] I.I. Serysheva, E.V. Orlova, W. Chiu, et al., Electron cryomicroscopy and angular reconstitution used to visualize the skeletal muscle calcium release channel, Nat. Struct. Biol. 2 (1995) 18-24.
-
[21] M. Radermacher, V. Rao, R. Grassucci, et al., Cryo-electron microscopy and threedimensional reconstruction of the calcium release channel/ryanodine receptor from skeletal muscle, J. Cell Biol. 127 (1994) 411-423.[21] M. Radermacher, V. Rao, R. Grassucci, et al., Cryo-electron microscopy and threedimensional reconstruction of the calcium release channel/ryanodine receptor from skeletal muscle, J. Cell Biol. 127 (1994) 411-423.
-
[22] L. Kimlicka, F. Van Petegem, The structural biology of ryanodine receptors, Sci. China Life Sci. 54 (2011) 712-724.[22] L. Kimlicka, F. Van Petegem, The structural biology of ryanodine receptors, Sci. China Life Sci. 54 (2011) 712-724.
-
[23] F. Van Petegem, Ryanodine receptors: structure and function, J. Biol. Chem. 287 (2012) 31624-31632.[23] F. Van Petegem, Ryanodine receptors: structure and function, J. Biol. Chem. 287 (2012) 31624-31632.
-
[24] L.N. Sun, L. Cui, C.H. Rui, et al., Modulation of the expression of ryanodine receptor mRNA from Plutella xylostella as a result of diamide insecticide application, Gene 511 (2012) 265-273.[24] L.N. Sun, L. Cui, C.H. Rui, et al., Modulation of the expression of ryanodine receptor mRNA from Plutella xylostella as a result of diamide insecticide application, Gene 511 (2012) 265-273.
-
[25] G.Y. Liu, X.L. Ju, J. Cheng, Z.Q. Liu, 3D-QSAR studies of insecticidal anthranilic diamides as ryanodine receptor activators using CoMFA, CoMSIA and DISCOtech, Chemosphere 78 (2010) 300-306.[25] G.Y. Liu, X.L. Ju, J. Cheng, Z.Q. Liu, 3D-QSAR studies of insecticidal anthranilic diamides as ryanodine receptor activators using CoMFA, CoMSIA and DISCOtech, Chemosphere 78 (2010) 300-306.
-
[26] L. Zhang, G.F. Hao, Y. Tan, et al., Bioactive conformation analysis of cyclic imides as protoporphyrinogen oxidase inhibitor by combining DFT calculations, QSAR and molecular dynamic simulations, Bioorg. Med. Chem. 17 (2009) 4935-4942.[26] L. Zhang, G.F. Hao, Y. Tan, et al., Bioactive conformation analysis of cyclic imides as protoporphyrinogen oxidase inhibitor by combining DFT calculations, QSAR and molecular dynamic simulations, Bioorg. Med. Chem. 17 (2009) 4935-4942.
-
[27] J.W. Zou, C.C. Luo, H.X. Zhang, et al., Three-dimensional QSAR of HPPD inhibitors, PSA inhibitors, and anxiolytic agents: effect of tautomerism on the CoMFA models, J. Mol. Graph. Model. 26 (2007) 494-504.[27] J.W. Zou, C.C. Luo, H.X. Zhang, et al., Three-dimensional QSAR of HPPD inhibitors, PSA inhibitors, and anxiolytic agents: effect of tautomerism on the CoMFA models, J. Mol. Graph. Model. 26 (2007) 494-504.
-
[28] T.H. Li, X.G. Xie, G.B. Du, A theoretical study on the water-mediated asynchronous addition between urea and formaldehyde, Chin. Chem. Lett. 24 (2013) 85-88.[28] T.H. Li, X.G. Xie, G.B. Du, A theoretical study on the water-mediated asynchronous addition between urea and formaldehyde, Chin. Chem. Lett. 24 (2013) 85-88.
-
[29] A.A. Peyghan, M.T. Baei, S. Hashemian, M. Moghimi, Adsorption of nitrous oxide on the (6,0) magnesium oxide nanotube, Chin. Chem. Lett. 23 (2012) 1275-1278.[29] A.A. Peyghan, M.T. Baei, S. Hashemian, M. Moghimi, Adsorption of nitrous oxide on the (6,0) magnesium oxide nanotube, Chin. Chem. Lett. 23 (2012) 1275-1278.
-
[30] S. Xia, Y. Feng, J.G. Cheng, et al., QAAR exploration on pesticides with high solubility: an investigation on sulfonylurea herbicide dimers formed through π-π stacking interactions, Chin. Chem. Lett. 25 (2014) 973-977.[30] S. Xia, Y. Feng, J.G. Cheng, et al., QAAR exploration on pesticides with high solubility: an investigation on sulfonylurea herbicide dimers formed through π-π stacking interactions, Chin. Chem. Lett. 25 (2014) 973-977.
-
[31] G.P. Lahm, T.M. Stevenson, T.P. Selby, et al., RynaxypyrTM: a new insecticidal anthranilic diamide that acts as a potent and selective ryanodine receptor activator, Bioorg. Med. Chem. Lett. 17 (2007) 6274-6279.[31] G.P. Lahm, T.M. Stevenson, T.P. Selby, et al., RynaxypyrTM: a new insecticidal anthranilic diamide that acts as a potent and selective ryanodine receptor activator, Bioorg. Med. Chem. Lett. 17 (2007) 6274-6279.
-
[32] G.P. Lahm, T.P. Selby, J.H. Freudenberger, et al., Insecticidal anthranilic diamides: a new class of potent ryanodine receptor activators, Bioorg. Med. Chem. Lett. 15 (2005) 4898-4906.[32] G.P. Lahm, T.P. Selby, J.H. Freudenberger, et al., Insecticidal anthranilic diamides: a new class of potent ryanodine receptor activators, Bioorg. Med. Chem. Lett. 15 (2005) 4898-4906.
-
-
扫一扫看文章
计量
- PDF下载量: 0
- 文章访问数: 1291
- HTML全文浏览量: 11

下载: