Bioactive conformation analysis of anthranilic diamide insecticides: DFT-based potential energy surface scanning and 3D-QSAR investigations

Dan-Ping Jiang Cheng-Chun Zhu Xu-Sheng Shao Jia-Gao Cheng Zhong Li

Citation:  Dan-Ping Jiang, Cheng-Chun Zhu, Xu-Sheng Shao, Jia-Gao Cheng, Zhong Li. Bioactive conformation analysis of anthranilic diamide insecticides: DFT-based potential energy surface scanning and 3D-QSAR investigations[J]. Chinese Chemical Letters, 2015, 26(6): 662-666. doi: 10.1016/j.cclet.2015.04.010 shu

Bioactive conformation analysis of anthranilic diamide insecticides: DFT-based potential energy surface scanning and 3D-QSAR investigations

    通讯作者: Jia-Gao Cheng,
  • 基金项目:

    The authors thanks for the financial support from the National Key Technology R&D Program of China (No. 2011BAE06B05). (No. 2011BAE06B05)

摘要: Anthranilic diamides are fasting growing class insecticides in modern crop protection for their high activity, low ecotoxicity, and broad insecticidal spectra. However, the bioactive conformations of anthranilic diamides are still unclear until now. In the present study, DFT-based potential energy surface scanning was used to detect the low energy conformations of chlorantraniliprole, then were used respectively in the structure alignment for a series of anthranilic diamide compounds followed by detailed CoMFA and CoMSIA analyses. Finally, the bioactive conformations of anthranilic diamide insecticides were revealed from a series of low energy conformations, which might provide some clues for future insecticide design.

English

  • 
    1. [1] A. Jeanguenat, The story of a new insecticidal chemistry class: the diamides, Pest Manag. Sci. 69 (2013) 7-14.[1] A. Jeanguenat, The story of a new insecticidal chemistry class: the diamides, Pest Manag. Sci. 69 (2013) 7-14.

    2. [2] T. Masaki, N. Yasokawa, S. Fujioka, et al., Quantitative relationship between insecticidal activity and Ca2+ pump stimulation by flubendiamide and its related compounds, J. Pestic. Sci. 34 (2009) 37-42.[2] T. Masaki, N. Yasokawa, S. Fujioka, et al., Quantitative relationship between insecticidal activity and Ca2+ pump stimulation by flubendiamide and its related compounds, J. Pestic. Sci. 34 (2009) 37-42.

    3. [3] M. Tohnishi, H. Nakao, T. Furuya, et al., Flubendiamide, a novel insecticide highly active against lepidopterous insect pests, J. Pestic. Sci 30 (2005) 354-360.[3] M. Tohnishi, H. Nakao, T. Furuya, et al., Flubendiamide, a novel insecticide highly active against lepidopterous insect pests, J. Pestic. Sci 30 (2005) 354-360.

    4. [4] A. Dinter, K.E. Brugger, N.M. Frost, M.D. Woodward, Chlorantraniliprole (Rynaxypyr): a novel DuPontTM insecticide with low toxicity and low risk for honey bees (Apis mellifera) and bumble bees (Bombus terre stris) providing excellent tools for uses in integrated pest management, Julius-Kühn-Archiv 423 (2010) 84-96.[4] A. Dinter, K.E. Brugger, N.M. Frost, M.D. Woodward, Chlorantraniliprole (Rynaxypyr): a novel DuPontTM insecticide with low toxicity and low risk for honey bees (Apis mellifera) and bumble bees (Bombus terre stris) providing excellent tools for uses in integrated pest management, Julius-Kühn-Archiv 423 (2010) 84-96.

    5. [5] D. Cordova, E.A. Benner, M.D. Sacher, et al., Anthranilic diamides: a new class of insecticides with a novel mode of action, ryanodine receptor activation, Pestic. Biochem. Physiol. 84 (2006) 196-214.[5] D. Cordova, E.A. Benner, M.D. Sacher, et al., Anthranilic diamides: a new class of insecticides with a novel mode of action, ryanodine receptor activation, Pestic. Biochem. Physiol. 84 (2006) 196-214.

    6. [6] D.B. Sattelle, D. Cordova, T.R. Cheek, Insect ryanodine receptors: molecular targets for novel pest control chemicals, Invert. Neurosci. 8 (2008) 107-119.[6] D.B. Sattelle, D. Cordova, T.R. Cheek, Insect ryanodine receptors: molecular targets for novel pest control chemicals, Invert. Neurosci. 8 (2008) 107-119.

    7. [7] Y.B. Chen, J.L. Li, X.S. Shao, X.Y. Xu, Z. Li, Design, synthesis and insecticidal activity of novel anthranilic diamides with benzyl sulfide scaffold, Chin. Chem. Lett. 24 (2013) 673-676.[7] Y.B. Chen, J.L. Li, X.S. Shao, X.Y. Xu, Z. Li, Design, synthesis and insecticidal activity of novel anthranilic diamides with benzyl sulfide scaffold, Chin. Chem. Lett. 24 (2013) 673-676.

    8. [8] D.A. Clark, G.P. Lahm, B.K. Smith, J.D. Barry, D.G. Clagg, Synthesis of insecticidal fluorinated anthranilic diamides, Bioorg. Med. Chem. 16 (2008) 3163-3170.[8] D.A. Clark, G.P. Lahm, B.K. Smith, J.D. Barry, D.G. Clagg, Synthesis of insecticidal fluorinated anthranilic diamides, Bioorg. Med. Chem. 16 (2008) 3163-3170.

    9. [9] M. Luo, Q.C. Chen, J. Wang, et al., Novel chlorantraniliprole derivatives as potential insecticides and probe to chlorantraniliprole binding site on ryanodine receptor, Bioorg. Med. Chem. Lett. 24 (2014) 1987-1992.[9] M. Luo, Q.C. Chen, J. Wang, et al., Novel chlorantraniliprole derivatives as potential insecticides and probe to chlorantraniliprole binding site on ryanodine receptor, Bioorg. Med. Chem. Lett. 24 (2014) 1987-1992.

    10. [10] J.J. Ou, X.K. Zhu, L. Wang, et al., Synthesis and bioactivity study of 2-acylaminosubstituted N0-benzylbenzohydrazide derivatives, J. Agric. Food Chem. 60 (2012) 10942-10951.[10] J.J. Ou, X.K. Zhu, L. Wang, et al., Synthesis and bioactivity study of 2-acylaminosubstituted N0-benzylbenzohydrazide derivatives, J. Agric. Food Chem. 60 (2012) 10942-10951.

    11. [11] T.P. Selby, G.P. Lahm, T.M. Stevenson, et al., Discovery of cyantraniliprole, a potent and selective anthranilic diamide ryanodine receptor activator with cross-spectrum insecticidal activity, Bioorg. Med. Chem. Lett. 23 (2013) 6341-6345.[11] T.P. Selby, G.P. Lahm, T.M. Stevenson, et al., Discovery of cyantraniliprole, a potent and selective anthranilic diamide ryanodine receptor activator with cross-spectrum insecticidal activity, Bioorg. Med. Chem. Lett. 23 (2013) 6341-6345.

    12. [12] B.L. Wang, H.W. Zhu, Y. Ma, et al., Synthesis, insecticidal activities, and SAR studies of novel pyridylpyrazole acid derivatives based on amide bridge modification of anthranilic diamide insecticides, J. Agric. Food Chem. 61 (2013) 5483-5493.[12] B.L. Wang, H.W. Zhu, Y. Ma, et al., Synthesis, insecticidal activities, and SAR studies of novel pyridylpyrazole acid derivatives based on amide bridge modification of anthranilic diamide insecticides, J. Agric. Food Chem. 61 (2013) 5483-5493.

    13. [13] J. Wu, B.A. Song, D.Y. Hu, M. Yue, S. Yang, Design, synthesis and insecticidal activities of novel pyrazole amides containing hydrazone substructures, Pest Manag. Sci. 68 (2012) 801-810.[13] J. Wu, B.A. Song, D.Y. Hu, M. Yue, S. Yang, Design, synthesis and insecticidal activities of novel pyrazole amides containing hydrazone substructures, Pest Manag. Sci. 68 (2012) 801-810.

    14. [14] J.F. Zhang, J.Y. Xu, B.L. Wang, et al., Synthesis and insecticidal activities of novel anthranilic diamides containing acylthiourea and acylurea, J. Agric. Food Chem. 60 (2012) 7565-7572.[14] J.F. Zhang, J.Y. Xu, B.L. Wang, et al., Synthesis and insecticidal activities of novel anthranilic diamides containing acylthiourea and acylurea, J. Agric. Food Chem. 60 (2012) 7565-7572.

    15. [15] Y.Y. Zhou, Q. Feng, F.J. Di, et al., Synthesis and insecticidal activities of 2,3-dihydroquinazolin-4(1H)-one derivatives targeting calcium channel, Bioorg. Med. Chem. 21 (2013) 4968-4975.[15] Y.Y. Zhou, Q. Feng, F.J. Di, et al., Synthesis and insecticidal activities of 2,3-dihydroquinazolin-4(1H)-one derivatives targeting calcium channel, Bioorg. Med. Chem. 21 (2013) 4968-4975.

    16. [16] A.K. Isaacs, S.Z. Qi, R. Sarpong, J.E. Casida, Insect ryanodine receptor: distinct but coupled insecticide binding sites for [N-C3H3]chlorantraniliprole, flubendiamide, and [3H]ryanodine, Chem. Res. Toxicol. 25 (2012) 1571-1573.[16] A.K. Isaacs, S.Z. Qi, R. Sarpong, J.E. Casida, Insect ryanodine receptor: distinct but coupled insecticide binding sites for [N-C3H3]chlorantraniliprole, flubendiamide, and [3H]ryanodine, Chem. Res. Toxicol. 25 (2012) 1571-1573.

    17. [17] G.P. Lahm, D. Cordova, J.D. Barry, New and selective ryanodine receptor activators for insect control, Bioorg. Med. Chem. 17 (2009) 4127-4133.[17] G.P. Lahm, D. Cordova, J.D. Barry, New and selective ryanodine receptor activators for insect control, Bioorg. Med. Chem. 17 (2009) 4127-4133.

    18. [18] S.Z. Qi, J.E. Casida, Species differences in chlorantraniliprole and flubendiamide insecticide binding sites in the ryanodine receptor, Pestic. Biochem. Physiol. 107 (2013) 321-326.[18] S.Z. Qi, J.E. Casida, Species differences in chlorantraniliprole and flubendiamide insecticide binding sites in the ryanodine receptor, Pestic. Biochem. Physiol. 107 (2013) 321-326.

    19. [19] S.R. LaPlante, H. Nar, C.T. Lemke, et al., Ligand bioactive conformation plays a critical role in the design of drugs that target the hepatitis C virus NS3 protease, J. Med. Chem. 57 (2014) 1777-1789.[19] S.R. LaPlante, H. Nar, C.T. Lemke, et al., Ligand bioactive conformation plays a critical role in the design of drugs that target the hepatitis C virus NS3 protease, J. Med. Chem. 57 (2014) 1777-1789.

    20. [20] I.I. Serysheva, E.V. Orlova, W. Chiu, et al., Electron cryomicroscopy and angular reconstitution used to visualize the skeletal muscle calcium release channel, Nat. Struct. Biol. 2 (1995) 18-24.[20] I.I. Serysheva, E.V. Orlova, W. Chiu, et al., Electron cryomicroscopy and angular reconstitution used to visualize the skeletal muscle calcium release channel, Nat. Struct. Biol. 2 (1995) 18-24.

    21. [21] M. Radermacher, V. Rao, R. Grassucci, et al., Cryo-electron microscopy and threedimensional reconstruction of the calcium release channel/ryanodine receptor from skeletal muscle, J. Cell Biol. 127 (1994) 411-423.[21] M. Radermacher, V. Rao, R. Grassucci, et al., Cryo-electron microscopy and threedimensional reconstruction of the calcium release channel/ryanodine receptor from skeletal muscle, J. Cell Biol. 127 (1994) 411-423.

    22. [22] L. Kimlicka, F. Van Petegem, The structural biology of ryanodine receptors, Sci. China Life Sci. 54 (2011) 712-724.[22] L. Kimlicka, F. Van Petegem, The structural biology of ryanodine receptors, Sci. China Life Sci. 54 (2011) 712-724.

    23. [23] F. Van Petegem, Ryanodine receptors: structure and function, J. Biol. Chem. 287 (2012) 31624-31632.[23] F. Van Petegem, Ryanodine receptors: structure and function, J. Biol. Chem. 287 (2012) 31624-31632.

    24. [24] L.N. Sun, L. Cui, C.H. Rui, et al., Modulation of the expression of ryanodine receptor mRNA from Plutella xylostella as a result of diamide insecticide application, Gene 511 (2012) 265-273.[24] L.N. Sun, L. Cui, C.H. Rui, et al., Modulation of the expression of ryanodine receptor mRNA from Plutella xylostella as a result of diamide insecticide application, Gene 511 (2012) 265-273.

    25. [25] G.Y. Liu, X.L. Ju, J. Cheng, Z.Q. Liu, 3D-QSAR studies of insecticidal anthranilic diamides as ryanodine receptor activators using CoMFA, CoMSIA and DISCOtech, Chemosphere 78 (2010) 300-306.[25] G.Y. Liu, X.L. Ju, J. Cheng, Z.Q. Liu, 3D-QSAR studies of insecticidal anthranilic diamides as ryanodine receptor activators using CoMFA, CoMSIA and DISCOtech, Chemosphere 78 (2010) 300-306.

    26. [26] L. Zhang, G.F. Hao, Y. Tan, et al., Bioactive conformation analysis of cyclic imides as protoporphyrinogen oxidase inhibitor by combining DFT calculations, QSAR and molecular dynamic simulations, Bioorg. Med. Chem. 17 (2009) 4935-4942.[26] L. Zhang, G.F. Hao, Y. Tan, et al., Bioactive conformation analysis of cyclic imides as protoporphyrinogen oxidase inhibitor by combining DFT calculations, QSAR and molecular dynamic simulations, Bioorg. Med. Chem. 17 (2009) 4935-4942.

    27. [27] J.W. Zou, C.C. Luo, H.X. Zhang, et al., Three-dimensional QSAR of HPPD inhibitors, PSA inhibitors, and anxiolytic agents: effect of tautomerism on the CoMFA models, J. Mol. Graph. Model. 26 (2007) 494-504.[27] J.W. Zou, C.C. Luo, H.X. Zhang, et al., Three-dimensional QSAR of HPPD inhibitors, PSA inhibitors, and anxiolytic agents: effect of tautomerism on the CoMFA models, J. Mol. Graph. Model. 26 (2007) 494-504.

    28. [28] T.H. Li, X.G. Xie, G.B. Du, A theoretical study on the water-mediated asynchronous addition between urea and formaldehyde, Chin. Chem. Lett. 24 (2013) 85-88.[28] T.H. Li, X.G. Xie, G.B. Du, A theoretical study on the water-mediated asynchronous addition between urea and formaldehyde, Chin. Chem. Lett. 24 (2013) 85-88.

    29. [29] A.A. Peyghan, M.T. Baei, S. Hashemian, M. Moghimi, Adsorption of nitrous oxide on the (6,0) magnesium oxide nanotube, Chin. Chem. Lett. 23 (2012) 1275-1278.[29] A.A. Peyghan, M.T. Baei, S. Hashemian, M. Moghimi, Adsorption of nitrous oxide on the (6,0) magnesium oxide nanotube, Chin. Chem. Lett. 23 (2012) 1275-1278.

    30. [30] S. Xia, Y. Feng, J.G. Cheng, et al., QAAR exploration on pesticides with high solubility: an investigation on sulfonylurea herbicide dimers formed through π-π stacking interactions, Chin. Chem. Lett. 25 (2014) 973-977.[30] S. Xia, Y. Feng, J.G. Cheng, et al., QAAR exploration on pesticides with high solubility: an investigation on sulfonylurea herbicide dimers formed through π-π stacking interactions, Chin. Chem. Lett. 25 (2014) 973-977.

    31. [31] G.P. Lahm, T.M. Stevenson, T.P. Selby, et al., RynaxypyrTM: a new insecticidal anthranilic diamide that acts as a potent and selective ryanodine receptor activator, Bioorg. Med. Chem. Lett. 17 (2007) 6274-6279.[31] G.P. Lahm, T.M. Stevenson, T.P. Selby, et al., RynaxypyrTM: a new insecticidal anthranilic diamide that acts as a potent and selective ryanodine receptor activator, Bioorg. Med. Chem. Lett. 17 (2007) 6274-6279.

    32. [32] G.P. Lahm, T.P. Selby, J.H. Freudenberger, et al., Insecticidal anthranilic diamides: a new class of potent ryanodine receptor activators, Bioorg. Med. Chem. Lett. 15 (2005) 4898-4906.[32] G.P. Lahm, T.P. Selby, J.H. Freudenberger, et al., Insecticidal anthranilic diamides: a new class of potent ryanodine receptor activators, Bioorg. Med. Chem. Lett. 15 (2005) 4898-4906.

  • 加载中
计量
  • PDF下载量:  0
  • 文章访问数:  1291
  • HTML全文浏览量:  11
文章相关
  • 发布日期:  2015-04-17
  • 收稿日期:  2014-11-08
  • 网络出版日期:  2015-03-17
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章