Solubilization of organic compounds by arginine-derived polymers

Xuchen Huang Yanbin Huang

Citation:  Xuchen Huang, Yanbin Huang. Solubilization of organic compounds by arginine-derived polymers[J]. Chinese Chemical Letters, 2015, 26(6): 636-640. doi: 10.1016/j.cclet.2015.04.009 shu

Solubilization of organic compounds by arginine-derived polymers

    通讯作者: Yanbin Huang,
  • 基金项目:

    This study is supported by the Natural Science Foundation of China (No. 21434008). (No. 21434008)

摘要: Poor aqueous solubility of drugs is one of the major challenges in the pharmaceutical science. In this study, a guanidinium-containing polymer based on arginine was designed and synthesized, and was evaluated as a solubility enhancing additive for three model organic compounds (coumarin, pyrene and doxorubicin). At a guanidinium group concentration of 100 mmol/L, the polymer could significantly increase the solubility of pyrene and doxorubicin by 6-and 11-fold respectively, much more effective than arginine (2-and 3-fold, respectively). In contrast, its effect on the solubility of coumarin was less effective than arginine. The solubilizing effect may be explained by the enhanced interaction between the guanidinium group in the polymer and the aromatic compounds.

English

  • 
    1. [1] L. Di, E.H. Kerns, G.T. Carter, Drug-like property concepts in pharmaceutical design, Curr. Pharm. Des. 15 (2009) 2184-2194.[1] L. Di, E.H. Kerns, G.T. Carter, Drug-like property concepts in pharmaceutical design, Curr. Pharm. Des. 15 (2009) 2184-2194.

    2. [2] T. Takagi, C. Ramachandran, M. Bermejo, et al., A provisional biopharmaceutical classification of the top 200 oral drug products in the United States, Great Britain, Spain, and Japan, Mol. Pharm. 3 (2006) 631-643.[2] T. Takagi, C. Ramachandran, M. Bermejo, et al., A provisional biopharmaceutical classification of the top 200 oral drug products in the United States, Great Britain, Spain, and Japan, Mol. Pharm. 3 (2006) 631-643.

    3. [3] Y.B. Huang, W.G. Dai, Fundamental aspects of solid dispersion technology for poorly soluble drugs, Acta Pharm. Sin. B 4 (2014) 18-25.[3] Y.B. Huang, W.G. Dai, Fundamental aspects of solid dispersion technology for poorly soluble drugs, Acta Pharm. Sin. B 4 (2014) 18-25.

    4. [4] Y. Zhang, M.Y. Xu, T.K. Jiang, W.Z. Huang, J.Y. Wu, Low generational polyamidoamine dendrimers to enhance the solubility of folic acid: a "dendritic effect" investigation, Chin. Chem. Lett. 25 (2014) 815-818.[4] Y. Zhang, M.Y. Xu, T.K. Jiang, W.Z. Huang, J.Y. Wu, Low generational polyamidoamine dendrimers to enhance the solubility of folic acid: a "dendritic effect" investigation, Chin. Chem. Lett. 25 (2014) 815-818.

    5. [5] L. Wang, L.L. Li, H.L. Ma, H. Wang, Recent advances in biocompatible supramolecular assemblies for biomolecular detection and delivery, Chin. Chem. Lett. 24 (2013) 351-358.[5] L. Wang, L.L. Li, H.L. Ma, H. Wang, Recent advances in biocompatible supramolecular assemblies for biomolecular detection and delivery, Chin. Chem. Lett. 24 (2013) 351-358.

    6. [6] H.R. Guzman, M. Tawa, Z. Zhang, et al., Combined use of crystalline salt forms and precipitation inhibitors to improve oral absorption of celecoxib from solid oral formulations, J. Pharm. Sci. 96 (2007) 2686-2702.[6] H.R. Guzman, M. Tawa, Z. Zhang, et al., Combined use of crystalline salt forms and precipitation inhibitors to improve oral absorption of celecoxib from solid oral formulations, J. Pharm. Sci. 96 (2007) 2686-2702.

    7. [7] K.A. Schug, W. Lindner, Noncovalent binding between guanidinium and anionic groups: focus on biological-and synthetic-based arginine/guanidinium interactions with phosph[on]ate and sulf[on]ate residues, Chem. Rev. 105 (2005) 67-114.[7] K.A. Schug, W. Lindner, Noncovalent binding between guanidinium and anionic groups: focus on biological-and synthetic-based arginine/guanidinium interactions with phosph[on]ate and sulf[on]ate residues, Chem. Rev. 105 (2005) 67-114.

    8. [8] N. Sakai, S. Matile, Anion-mediated transfer of polyarginine across liquid and bilayer membranes, J. Am. Chem. Soc. 125 (2003) 14348-14356.[8] N. Sakai, S. Matile, Anion-mediated transfer of polyarginine across liquid and bilayer membranes, J. Am. Chem. Soc. 125 (2003) 14348-14356.

    9. [9] T. Arakawa, Y. Kita, A.H. Koyama, Solubility enhancement of gluten and organic compounds by arginine, Int. J. Pharm. 355 (2008) 220-223.[9] T. Arakawa, Y. Kita, A.H. Koyama, Solubility enhancement of gluten and organic compounds by arginine, Int. J. Pharm. 355 (2008) 220-223.

    10. [10] A. Hirano, T. Kameda, T. Arakawa, K. Shiraki, Arginine-assisted solubilization system for drug substances: solubility experiment and simulation, J. Phys. Chem. B 114 (2010) 13455-13462.[10] A. Hirano, T. Kameda, T. Arakawa, K. Shiraki, Arginine-assisted solubilization system for drug substances: solubility experiment and simulation, J. Phys. Chem. B 114 (2010) 13455-13462.

    11. [11] D. Shukla, B.L. Trout, Interaction of arginine with proteins and the mechanism by which it inhibits aggregation, J. Phys. Chem. B 114 (2010) 13426-13438.[11] D. Shukla, B.L. Trout, Interaction of arginine with proteins and the mechanism by which it inhibits aggregation, J. Phys. Chem. B 114 (2010) 13426-13438.

    12. [12] P.E. Mason, G.W. Neilson, J.E. Enderby, et al., The structure of aqueous guanidinium chloride solutions, J. Am. Chem. Soc. 126 (2004) 11462-11470.[12] P.E. Mason, G.W. Neilson, J.E. Enderby, et al., The structure of aqueous guanidinium chloride solutions, J. Am. Chem. Soc. 126 (2004) 11462-11470.

    13. [13] J.G. Li, M. Garg, D. Shah, R. Rajagopalan, Solubilization of aromatic and hydrophobic moieties by arginine in aqueous solutions, J. Chem. Phys. 133 (2010) 054902.[13] J.G. Li, M. Garg, D. Shah, R. Rajagopalan, Solubilization of aromatic and hydrophobic moieties by arginine in aqueous solutions, J. Chem. Phys. 133 (2010) 054902.

    14. [14] K. Tsumoto, M. Umetsu, I. Kumagai, et al., Role of arginine in protein refolding, solubilization, and purification, Biotechnol. Prog. 20 (2004) 1301-1308.[14] K. Tsumoto, M. Umetsu, I. Kumagai, et al., Role of arginine in protein refolding, solubilization, and purification, Biotechnol. Prog. 20 (2004) 1301-1308.

    15. [15] B.M. Baynes, D.I.C. Wang, B.L. Trout, Role of arginine in the stabilization of proteins against aggregation, Biochemistry 44 (2005) 4919-4925.[15] B.M. Baynes, D.I.C. Wang, B.L. Trout, Role of arginine in the stabilization of proteins against aggregation, Biochemistry 44 (2005) 4919-4925.

    16. [16] U. Das, G. Hariprasad, A.S. Ethayathulla, et al., Inhibition of protein aggregation: supramolecular assemblies of arginine hold the key, PLoS One 11 (2007) e1176.[16] U. Das, G. Hariprasad, A.S. Ethayathulla, et al., Inhibition of protein aggregation: supramolecular assemblies of arginine hold the key, PLoS One 11 (2007) e1176.

    17. [17] J. Arakawa, M. Uegaki, T. Ishimizu, Effects of L-arginine on solubilization and purification of plant membrane proteins, Protein Expr. Purif. 80 (2011) 91-96.[17] J. Arakawa, M. Uegaki, T. Ishimizu, Effects of L-arginine on solubilization and purification of plant membrane proteins, Protein Expr. Purif. 80 (2011) 91-96.

    18. [18] M.M. Varughese, J. Newman, Inhibitory effects of arginine on the aggregation of bovine insulin, J. Biophys. 2012 (2012) 434289.[18] M.M. Varughese, J. Newman, Inhibitory effects of arginine on the aggregation of bovine insulin, J. Biophys. 2012 (2012) 434289.

    19. [19] D.X. Zhao, Z.X. Huang, Effect of arginine on stability of GST-ZNF191 (243-368), Chin. Chem. Lett. 18 (2007) 355-356.[19] D.X. Zhao, Z.X. Huang, Effect of arginine on stability of GST-ZNF191 (243-368), Chin. Chem. Lett. 18 (2007) 355-356.

    20. [20] A. Hirano, T. Arakawa, K. Shiraki, Arginine increases the solubility of coumarin: comparison with salting-in and salting-out additives, J. Biochem. 144 (2008) 363-369.[20] A. Hirano, T. Arakawa, K. Shiraki, Arginine increases the solubility of coumarin: comparison with salting-in and salting-out additives, J. Biochem. 144 (2008) 363-369.

    21. [21] J.G. Cheng, X.M. Luo, X.H. Yan, et al., Research progress in cation-p interactions, Sci. China Ser. B: Chem. 51 (2008) 709-717.[21] J.G. Cheng, X.M. Luo, X.H. Yan, et al., Research progress in cation-p interactions, Sci. China Ser. B: Chem. 51 (2008) 709-717.

    22. [22] Y. Kim, S. Binauld, M.H. Stenzel, Zwitterionic guanidine-based oligomers mimicking cell-penetrating peptides as a nontoxic alternative to cationic polymers to enhance the cellular uptake of micelles, Biomacromolecule 13 (2012) 3418-3426.[22] Y. Kim, S. Binauld, M.H. Stenzel, Zwitterionic guanidine-based oligomers mimicking cell-penetrating peptides as a nontoxic alternative to cationic polymers to enhance the cellular uptake of micelles, Biomacromolecule 13 (2012) 3418-3426.

    23. [23] Z.L. Luo, G.Z. Zhang, Scaling for sedimentation and diffusion of poly(ethylene glycol) in water, J. Phys. Chem. B 113 (2009) 12462-12465.[23] Z.L. Luo, G.Z. Zhang, Scaling for sedimentation and diffusion of poly(ethylene glycol) in water, J. Phys. Chem. B 113 (2009) 12462-12465.

    24. [24] L.C. Cartwright, Vanilla-like synthetics, solubility and volatility of propenyl guaethyl, bourbonal, vanillin, and coumarin, J. Agric. Food Chem. 1 (1953) 312-314.[24] L.C. Cartwright, Vanilla-like synthetics, solubility and volatility of propenyl guaethyl, bourbonal, vanillin, and coumarin, J. Agric. Food Chem. 1 (1953) 312-314.

    25. [25] D. Mackay, W.Y. Shiu, Aqueous solubility of polynuclear aromatic hydrocarbons, J. Chem. Eng. Data 22 (1977) 399-402.[25] D. Mackay, W.Y. Shiu, Aqueous solubility of polynuclear aromatic hydrocarbons, J. Chem. Eng. Data 22 (1977) 399-402.

  • 加载中
计量
  • PDF下载量:  0
  • 文章访问数:  1363
  • HTML全文浏览量:  28
文章相关
  • 发布日期:  2015-04-20
  • 收稿日期:  2015-01-27
  • 网络出版日期:  2015-04-01
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章