Solubilization of organic compounds by arginine-derived polymers
English
Solubilization of organic compounds by arginine-derived polymers
-
Key words:
- Arginine
- / Cation-π interaction
- / Drug solubilization
-
-
-
[1] L. Di, E.H. Kerns, G.T. Carter, Drug-like property concepts in pharmaceutical design, Curr. Pharm. Des. 15 (2009) 2184-2194.[1] L. Di, E.H. Kerns, G.T. Carter, Drug-like property concepts in pharmaceutical design, Curr. Pharm. Des. 15 (2009) 2184-2194.
-
[2] T. Takagi, C. Ramachandran, M. Bermejo, et al., A provisional biopharmaceutical classification of the top 200 oral drug products in the United States, Great Britain, Spain, and Japan, Mol. Pharm. 3 (2006) 631-643.[2] T. Takagi, C. Ramachandran, M. Bermejo, et al., A provisional biopharmaceutical classification of the top 200 oral drug products in the United States, Great Britain, Spain, and Japan, Mol. Pharm. 3 (2006) 631-643.
-
[3] Y.B. Huang, W.G. Dai, Fundamental aspects of solid dispersion technology for poorly soluble drugs, Acta Pharm. Sin. B 4 (2014) 18-25.[3] Y.B. Huang, W.G. Dai, Fundamental aspects of solid dispersion technology for poorly soluble drugs, Acta Pharm. Sin. B 4 (2014) 18-25.
-
[4] Y. Zhang, M.Y. Xu, T.K. Jiang, W.Z. Huang, J.Y. Wu, Low generational polyamidoamine dendrimers to enhance the solubility of folic acid: a "dendritic effect" investigation, Chin. Chem. Lett. 25 (2014) 815-818.[4] Y. Zhang, M.Y. Xu, T.K. Jiang, W.Z. Huang, J.Y. Wu, Low generational polyamidoamine dendrimers to enhance the solubility of folic acid: a "dendritic effect" investigation, Chin. Chem. Lett. 25 (2014) 815-818.
-
[5] L. Wang, L.L. Li, H.L. Ma, H. Wang, Recent advances in biocompatible supramolecular assemblies for biomolecular detection and delivery, Chin. Chem. Lett. 24 (2013) 351-358.[5] L. Wang, L.L. Li, H.L. Ma, H. Wang, Recent advances in biocompatible supramolecular assemblies for biomolecular detection and delivery, Chin. Chem. Lett. 24 (2013) 351-358.
-
[6] H.R. Guzman, M. Tawa, Z. Zhang, et al., Combined use of crystalline salt forms and precipitation inhibitors to improve oral absorption of celecoxib from solid oral formulations, J. Pharm. Sci. 96 (2007) 2686-2702.[6] H.R. Guzman, M. Tawa, Z. Zhang, et al., Combined use of crystalline salt forms and precipitation inhibitors to improve oral absorption of celecoxib from solid oral formulations, J. Pharm. Sci. 96 (2007) 2686-2702.
-
[7] K.A. Schug, W. Lindner, Noncovalent binding between guanidinium and anionic groups: focus on biological-and synthetic-based arginine/guanidinium interactions with phosph[on]ate and sulf[on]ate residues, Chem. Rev. 105 (2005) 67-114.[7] K.A. Schug, W. Lindner, Noncovalent binding between guanidinium and anionic groups: focus on biological-and synthetic-based arginine/guanidinium interactions with phosph[on]ate and sulf[on]ate residues, Chem. Rev. 105 (2005) 67-114.
-
[8] N. Sakai, S. Matile, Anion-mediated transfer of polyarginine across liquid and bilayer membranes, J. Am. Chem. Soc. 125 (2003) 14348-14356.[8] N. Sakai, S. Matile, Anion-mediated transfer of polyarginine across liquid and bilayer membranes, J. Am. Chem. Soc. 125 (2003) 14348-14356.
-
[9] T. Arakawa, Y. Kita, A.H. Koyama, Solubility enhancement of gluten and organic compounds by arginine, Int. J. Pharm. 355 (2008) 220-223.[9] T. Arakawa, Y. Kita, A.H. Koyama, Solubility enhancement of gluten and organic compounds by arginine, Int. J. Pharm. 355 (2008) 220-223.
-
[10] A. Hirano, T. Kameda, T. Arakawa, K. Shiraki, Arginine-assisted solubilization system for drug substances: solubility experiment and simulation, J. Phys. Chem. B 114 (2010) 13455-13462.[10] A. Hirano, T. Kameda, T. Arakawa, K. Shiraki, Arginine-assisted solubilization system for drug substances: solubility experiment and simulation, J. Phys. Chem. B 114 (2010) 13455-13462.
-
[11] D. Shukla, B.L. Trout, Interaction of arginine with proteins and the mechanism by which it inhibits aggregation, J. Phys. Chem. B 114 (2010) 13426-13438.[11] D. Shukla, B.L. Trout, Interaction of arginine with proteins and the mechanism by which it inhibits aggregation, J. Phys. Chem. B 114 (2010) 13426-13438.
-
[12] P.E. Mason, G.W. Neilson, J.E. Enderby, et al., The structure of aqueous guanidinium chloride solutions, J. Am. Chem. Soc. 126 (2004) 11462-11470.[12] P.E. Mason, G.W. Neilson, J.E. Enderby, et al., The structure of aqueous guanidinium chloride solutions, J. Am. Chem. Soc. 126 (2004) 11462-11470.
-
[13] J.G. Li, M. Garg, D. Shah, R. Rajagopalan, Solubilization of aromatic and hydrophobic moieties by arginine in aqueous solutions, J. Chem. Phys. 133 (2010) 054902.[13] J.G. Li, M. Garg, D. Shah, R. Rajagopalan, Solubilization of aromatic and hydrophobic moieties by arginine in aqueous solutions, J. Chem. Phys. 133 (2010) 054902.
-
[14] K. Tsumoto, M. Umetsu, I. Kumagai, et al., Role of arginine in protein refolding, solubilization, and purification, Biotechnol. Prog. 20 (2004) 1301-1308.[14] K. Tsumoto, M. Umetsu, I. Kumagai, et al., Role of arginine in protein refolding, solubilization, and purification, Biotechnol. Prog. 20 (2004) 1301-1308.
-
[15] B.M. Baynes, D.I.C. Wang, B.L. Trout, Role of arginine in the stabilization of proteins against aggregation, Biochemistry 44 (2005) 4919-4925.[15] B.M. Baynes, D.I.C. Wang, B.L. Trout, Role of arginine in the stabilization of proteins against aggregation, Biochemistry 44 (2005) 4919-4925.
-
[16] U. Das, G. Hariprasad, A.S. Ethayathulla, et al., Inhibition of protein aggregation: supramolecular assemblies of arginine hold the key, PLoS One 11 (2007) e1176.[16] U. Das, G. Hariprasad, A.S. Ethayathulla, et al., Inhibition of protein aggregation: supramolecular assemblies of arginine hold the key, PLoS One 11 (2007) e1176.
-
[17] J. Arakawa, M. Uegaki, T. Ishimizu, Effects of L-arginine on solubilization and purification of plant membrane proteins, Protein Expr. Purif. 80 (2011) 91-96.[17] J. Arakawa, M. Uegaki, T. Ishimizu, Effects of L-arginine on solubilization and purification of plant membrane proteins, Protein Expr. Purif. 80 (2011) 91-96.
-
[18] M.M. Varughese, J. Newman, Inhibitory effects of arginine on the aggregation of bovine insulin, J. Biophys. 2012 (2012) 434289.[18] M.M. Varughese, J. Newman, Inhibitory effects of arginine on the aggregation of bovine insulin, J. Biophys. 2012 (2012) 434289.
-
[19] D.X. Zhao, Z.X. Huang, Effect of arginine on stability of GST-ZNF191 (243-368), Chin. Chem. Lett. 18 (2007) 355-356.[19] D.X. Zhao, Z.X. Huang, Effect of arginine on stability of GST-ZNF191 (243-368), Chin. Chem. Lett. 18 (2007) 355-356.
-
[20] A. Hirano, T. Arakawa, K. Shiraki, Arginine increases the solubility of coumarin: comparison with salting-in and salting-out additives, J. Biochem. 144 (2008) 363-369.[20] A. Hirano, T. Arakawa, K. Shiraki, Arginine increases the solubility of coumarin: comparison with salting-in and salting-out additives, J. Biochem. 144 (2008) 363-369.
-
[21] J.G. Cheng, X.M. Luo, X.H. Yan, et al., Research progress in cation-p interactions, Sci. China Ser. B: Chem. 51 (2008) 709-717.[21] J.G. Cheng, X.M. Luo, X.H. Yan, et al., Research progress in cation-p interactions, Sci. China Ser. B: Chem. 51 (2008) 709-717.
-
[22] Y. Kim, S. Binauld, M.H. Stenzel, Zwitterionic guanidine-based oligomers mimicking cell-penetrating peptides as a nontoxic alternative to cationic polymers to enhance the cellular uptake of micelles, Biomacromolecule 13 (2012) 3418-3426.[22] Y. Kim, S. Binauld, M.H. Stenzel, Zwitterionic guanidine-based oligomers mimicking cell-penetrating peptides as a nontoxic alternative to cationic polymers to enhance the cellular uptake of micelles, Biomacromolecule 13 (2012) 3418-3426.
-
[23] Z.L. Luo, G.Z. Zhang, Scaling for sedimentation and diffusion of poly(ethylene glycol) in water, J. Phys. Chem. B 113 (2009) 12462-12465.[23] Z.L. Luo, G.Z. Zhang, Scaling for sedimentation and diffusion of poly(ethylene glycol) in water, J. Phys. Chem. B 113 (2009) 12462-12465.
-
[24] L.C. Cartwright, Vanilla-like synthetics, solubility and volatility of propenyl guaethyl, bourbonal, vanillin, and coumarin, J. Agric. Food Chem. 1 (1953) 312-314.[24] L.C. Cartwright, Vanilla-like synthetics, solubility and volatility of propenyl guaethyl, bourbonal, vanillin, and coumarin, J. Agric. Food Chem. 1 (1953) 312-314.
-
[25] D. Mackay, W.Y. Shiu, Aqueous solubility of polynuclear aromatic hydrocarbons, J. Chem. Eng. Data 22 (1977) 399-402.[25] D. Mackay, W.Y. Shiu, Aqueous solubility of polynuclear aromatic hydrocarbons, J. Chem. Eng. Data 22 (1977) 399-402.
-
-
扫一扫看文章
计量
- PDF下载量: 0
- 文章访问数: 1363
- HTML全文浏览量: 28

下载: