Synthesis and spectroscopic characterization of novel 2-amino-4,5,6,7-tetrahydro-3H-cyclopenta[d]pyrimidine and pyrimido[1,2-a]pyrimidine derivatives

Mohamed S.A. El-Gaby Jehan A. Micky Nadia M. Saleh Yousry A. Ammar Heba S.A. Mohamed

Citation:  Mohamed S.A. El-Gaby, Jehan A. Micky, Nadia M. Saleh, Yousry A. Ammar, Heba S.A. Mohamed. Synthesis and spectroscopic characterization of novel 2-amino-4,5,6,7-tetrahydro-3H-cyclopenta[d]pyrimidine and pyrimido[1,2-a]pyrimidine derivatives[J]. Chinese Chemical Letters, 2015, 26(6): 690-694. doi: 10.1016/j.cclet.2015.04.003 shu

Synthesis and spectroscopic characterization of novel 2-amino-4,5,6,7-tetrahydro-3H-cyclopenta[d]pyrimidine and pyrimido[1,2-a]pyrimidine derivatives

    通讯作者: Mohamed S.A. El-Gaby,
摘要: 2-Aminocyclopenta[d]pyrimidines 3a-c were achieved via a one-pot, three-component reactions of cyclopentanone 1, aromatic aldehyde and guanidine hydrochloride (1:2:1 molar ratio). Also, cyclization of 2,5-bis-(arylmethylidene)cyclopentanones 2 with guanidine hydrochloride (1:1 molar ratio) in methanol in the presence of sodiummethoxide afforded cyclopenta-[d]pyrimidines 3. Compound 3a has been shown to be a useful building block for the synthesis of some novel pyrimido[1,2-a]pyrimidines 5, 7 and 12. The structures of the newly synthesized compounds were confirmed on the basis of analytical and spectral data.

English

  • 
    1. [1] A.R. Katritzky, C.W. Rees, E.F.V. Scriven, Comprehensive Heterocyclic Chemistry II, Pergamon Press, Oxford, 1996.[1] A.R. Katritzky, C.W. Rees, E.F.V. Scriven, Comprehensive Heterocyclic Chemistry II, Pergamon Press, Oxford, 1996.

    2. [2] I.M. Lagoja, Pyrimidines as constituent of natural biologically active compounds, Chem. Biodivers. 2 (2005) 1-50.[2] I.M. Lagoja, Pyrimidines as constituent of natural biologically active compounds, Chem. Biodivers. 2 (2005) 1-50.

    3. [3] (a) H. Kakiya, K. Yagi, H. Shinokubo, et al., Reaction of a, a-dibromo oxime ethers with Grignard reagents: alkylative annulation providing a pyrimidine core, J. Am. Chem. Soc. 124 (2002) 9032-9033; (b) M. Movassaghi, M.D. Hill, Single-step synthesis of pyrimidine derivatives, J. Am. Chem. Soc. 128 (2006) 14254-14255.[3] (a) H. Kakiya, K. Yagi, H. Shinokubo, et al., Reaction of a, a-dibromo oxime ethers with Grignard reagents: alkylative annulation providing a pyrimidine core, J. Am. Chem. Soc. 124 (2002) 9032-9033; (b) M. Movassaghi, M.D. Hill, Single-step synthesis of pyrimidine derivatives, J. Am. Chem. Soc. 128 (2006) 14254-14255.

    4. [4] G.L. Luo, L. Chen, G.S. Poindexter, Microwave-assisted synthesis of aminopyrimidines, Tetrah. Lett. 43 (2002) 5739-5742.[4] G.L. Luo, L. Chen, G.S. Poindexter, Microwave-assisted synthesis of aminopyrimidines, Tetrah. Lett. 43 (2002) 5739-5742.

    5. [5] A.R. Katritzky, B.V. Rogovoys, Recent developments in guanylating agents, Chem. Inform. 36 (2005) 49-87.[5] A.R. Katritzky, B.V. Rogovoys, Recent developments in guanylating agents, Chem. Inform. 36 (2005) 49-87.

    6. [6] W.X. Zhang, Z.M. Hou, Catalytic addition of alkyne C-H, amine N-H, and phosphine P-H bonds to carbodiimides: an efficient route to propiolamidines, guanidines, and phosphaguanidines, Org. Biomol. Chem. 6 (2008) 1720-1730.[6] W.X. Zhang, Z.M. Hou, Catalytic addition of alkyne C-H, amine N-H, and phosphine P-H bonds to carbodiimides: an efficient route to propiolamidines, guanidines, and phosphaguanidines, Org. Biomol. Chem. 6 (2008) 1720-1730.

    7. [7] C. Alonso-Moreno, A. Antinolo, F. Carrillo-Hermosilla, A. Otero, Guanidines: from classical approaches to efficient catalytic syntheses, Chem. Soc. Rev. 43 (2014) 3406-3425.[7] C. Alonso-Moreno, A. Antinolo, F. Carrillo-Hermosilla, A. Otero, Guanidines: from classical approaches to efficient catalytic syntheses, Chem. Soc. Rev. 43 (2014) 3406-3425.

    8. [8] W.X. Zhang, L. Xu, Z.F. Xi, Recent development of synthetic preparation methods for guanidines via transition metal catalysis, Chem. Commun. 51 (2015) 254-265.[8] W.X. Zhang, L. Xu, Z.F. Xi, Recent development of synthetic preparation methods for guanidines via transition metal catalysis, Chem. Commun. 51 (2015) 254-265.

    9. [9] S. Pirc, D. Bevk, A. Golobič, B. Stanovnik, J. Svete, Transformation of amino acids into nonracemic 1-(heteroaryl)ethanamines by the ignominiousketone methodology, Helv. Chim. Acta 89 (2006) 30-44.[9] S. Pirc, D. Bevk, A. Golobič, B. Stanovnik, J. Svete, Transformation of amino acids into nonracemic 1-(heteroaryl)ethanamines by the ignominiousketone methodology, Helv. Chim. Acta 89 (2006) 30-44.

    10. [10] E. Bellur, P. Langer, Synthesis of 4-(3-hydroxyalkyl)pyrimidines by ring transformation reactions of 2-alkylidenetetrahydrofurans with amidines, Tetrahedron 62 (2006) 5426-5434.[10] E. Bellur, P. Langer, Synthesis of 4-(3-hydroxyalkyl)pyrimidines by ring transformation reactions of 2-alkylidenetetrahydrofurans with amidines, Tetrahedron 62 (2006) 5426-5434.

    11. [11] D. Hawksley, D.A. Griffin, F.J. Leeper, Synthesis of 3-deazathiamine, J. Chem. Soc. Perkin. Trans. I 1 (2001) 144-148.[11] D. Hawksley, D.A. Griffin, F.J. Leeper, Synthesis of 3-deazathiamine, J. Chem. Soc. Perkin. Trans. I 1 (2001) 144-148.

    12. [12] N. Singh, S.K. Pandey, N. Anand, et al., Synthesis, molecular modeling and bioevaluation of cycloalkyl fused 2-aminopyrimidines as antitubercular and antidiabetic agents, Bioorg. Medic. Chem. Lett. 21 (2011) 4404-4408.[12] N. Singh, S.K. Pandey, N. Anand, et al., Synthesis, molecular modeling and bioevaluation of cycloalkyl fused 2-aminopyrimidines as antitubercular and antidiabetic agents, Bioorg. Medic. Chem. Lett. 21 (2011) 4404-4408.

    13. [13] J. Zhu, H. Bienayme, Multicomponent Reactions, Wiely-VCH, Weinheim, Germany, 2005.[13] J. Zhu, H. Bienayme, Multicomponent Reactions, Wiely-VCH, Weinheim, Germany, 2005.

    14. [14] C. Simon, T. Constantieux, J. Rodriguez, Utilisation of 1, 3-dicarbonyl derivatives in multicomponent reactions, Eur. J. Org. Chem. 2004 (2004) 4957-4980.[14] C. Simon, T. Constantieux, J. Rodriguez, Utilisation of 1, 3-dicarbonyl derivatives in multicomponent reactions, Eur. J. Org. Chem. 2004 (2004) 4957-4980.

    15. [15] N. Isambert, M.S. Duque, J.C. Plaquevent, et al., Multicomponent reactions and ionic liquids: a perfect synergy for eco-compatible heterocyclic synthesis, Chem. Soc. Rev. 40 (2011) 1347-1357.[15] N. Isambert, M.S. Duque, J.C. Plaquevent, et al., Multicomponent reactions and ionic liquids: a perfect synergy for eco-compatible heterocyclic synthesis, Chem. Soc. Rev. 40 (2011) 1347-1357.

    16. [16] B.B. Touré, D.G. Hall, Natural product synthesis using multicomponent reaction strategies, Chem. Rev. 109 (2009) 4439-4486.[16] B.B. Touré, D.G. Hall, Natural product synthesis using multicomponent reaction strategies, Chem. Rev. 109 (2009) 4439-4486.

    17. [17] M.S.A. El-Gaby, G.A.M. El-Hag Ali, A.A. El-Maghraby, M.T.A. El-Rahman, M.H.M. Helal, Synthesis, characterization and in vitro antimicrobial activity of novel 2-thioxo-4-thiazolidinones and 4, 4'-bis(2-thioxo-4-thiazolidinone-3-yl)diphenylsulfones, Eur. J. Med. Chem. 44 (2009) 4148-4152.[17] M.S.A. El-Gaby, G.A.M. El-Hag Ali, A.A. El-Maghraby, M.T.A. El-Rahman, M.H.M. Helal, Synthesis, characterization and in vitro antimicrobial activity of novel 2-thioxo-4-thiazolidinones and 4, 4'-bis(2-thioxo-4-thiazolidinone-3-yl)diphenylsulfones, Eur. J. Med. Chem. 44 (2009) 4148-4152.

    18. [18] M.S.A. El-Gaby, Z.H. Ismail, S.M. Abdel-Gawad, H.M. Aly, M.M. Ghorab, Synthesis of thiazolidinone and thiophene derivatives for evaluation as anticancer, Phosph., Sulf. Silic. Rel. Elem. 184 (2009) 2645-2654.[18] M.S.A. El-Gaby, Z.H. Ismail, S.M. Abdel-Gawad, H.M. Aly, M.M. Ghorab, Synthesis of thiazolidinone and thiophene derivatives for evaluation as anticancer, Phosph., Sulf. Silic. Rel. Elem. 184 (2009) 2645-2654.

    19. [19] M.S.A. El-Gaby, S.I. Mohamed, H.A. Eyada, et al., New approach for the synthesis of pyrano[2, 3-d]thiazoles, J. Mater. Sci. Eng. A1 (2011) 705-710.[19] M.S.A. El-Gaby, S.I. Mohamed, H.A. Eyada, et al., New approach for the synthesis of pyrano[2, 3-d]thiazoles, J. Mater. Sci. Eng. A1 (2011) 705-710.

    20. [20] M.S. Abaee, M.M. Mojtahedi, S. Forghani, et al., A green, inexpensive and efficient organocatalyzed procedure for aqueous aldol condensations, J. Braz. Chem. Soc. 20 (2009) 1895-1900.[20] M.S. Abaee, M.M. Mojtahedi, S. Forghani, et al., A green, inexpensive and efficient organocatalyzed procedure for aqueous aldol condensations, J. Braz. Chem. Soc. 20 (2009) 1895-1900.

    21. [21] M.S.A. El-Gaby, A.M. Hussein, A.A. El-Adasy, et al., Synthesis and biological evaluation of novel substituted furan, pyrimidine and pyrimido[1,2-a]pyrimidine derivatives having diphenyl sulfide moiety, Int. J. Pharm. Sci. 4 (2014) 780-786.[21] M.S.A. El-Gaby, A.M. Hussein, A.A. El-Adasy, et al., Synthesis and biological evaluation of novel substituted furan, pyrimidine and pyrimido[1,2-a]pyrimidine derivatives having diphenyl sulfide moiety, Int. J. Pharm. Sci. 4 (2014) 780-786.

  • 加载中
计量
  • PDF下载量:  0
  • 文章访问数:  1216
  • HTML全文浏览量:  22
文章相关
  • 发布日期:  2015-04-13
  • 收稿日期:  2014-12-01
  • 网络出版日期:  2015-03-17
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章