Acidic rearrangement of benzyl group in flavone benzyl ethers and its regioselectivity
English
Acidic rearrangement of benzyl group in flavone benzyl ethers and its regioselectivity
-
-
-
[1] M. Singh, M. Kaur, O. Silakari, Flavones: an important scaffold for medicinal chemistry, Eur. J. Med. Chem. 84 (2014) 206–239.[1] M. Singh, M. Kaur, O. Silakari, Flavones: an important scaffold for medicinal chemistry, Eur. J. Med. Chem. 84 (2014) 206–239.
-
[2] S. Kumar, A.K. Pandey, Chemistry and biological activities of flavonoids: an overview, ScientificWorldJournal 2013 (2013) 162750.[2] S. Kumar, A.K. Pandey, Chemistry and biological activities of flavonoids: an overview, ScientificWorldJournal 2013 (2013) 162750.
-
[3] B. Romano, E. Pagano, V. Montanaro, et al., Novel insights into the pharmacology of flavonoids, Phytother. Res. 27 (2013) 1588–1596.[3] B. Romano, E. Pagano, V. Montanaro, et al., Novel insights into the pharmacology of flavonoids, Phytother. Res. 27 (2013) 1588–1596.
-
[4] G. Brahmachari, D. Gorai, Progress in the research on naturally occurring flavones and flavonols: an overview, Curr. Org. Chem. 10 (2006) 873–898.[4] G. Brahmachari, D. Gorai, Progress in the research on naturally occurring flavones and flavonols: an overview, Curr. Org. Chem. 10 (2006) 873–898.
-
[5] M.C. Li, Z. Yao, Y. Takaishi, et al., Isolation of novel phenolic compounds with multidrug resistance (MDR) reversal properties from Onychium japonicum, Chem. Biodivers. 8 (2011) 1112–1120.[5] M.C. Li, Z. Yao, Y. Takaishi, et al., Isolation of novel phenolic compounds with multidrug resistance (MDR) reversal properties from Onychium japonicum, Chem. Biodivers. 8 (2011) 1112–1120.
-
[6] J. Miao, J. Zhang, S.M. Deng, et al., Isolation and identification of chemical constituents from Citrullus colocynthis, Chin. Tradit. Herb. Drugs 43 (2012) 432–435.[6] J. Miao, J. Zhang, S.M. Deng, et al., Isolation and identification of chemical constituents from Citrullus colocynthis, Chin. Tradit. Herb. Drugs 43 (2012) 432–435.
-
[7] G.T. Maatooq, S.H. El-Sharkawy, M. Afifi, et al., C-p-hydroxybenzoylglycoflavones from Citrullus colocynthis, Phytochemistry 44 (1997) 187–190.[7] G.T. Maatooq, S.H. El-Sharkawy, M. Afifi, et al., C-p-hydroxybenzoylglycoflavones from Citrullus colocynthis, Phytochemistry 44 (1997) 187–190.
-
[8] R. Merghem, M. Jay, M.-R. Viricel, et al., Five 8-C-benzylated flavonoids from Thymus hirtus (Labiateae), Phytochemistry 38 (1995) 637–640.[8] R. Merghem, M. Jay, M.-R. Viricel, et al., Five 8-C-benzylated flavonoids from Thymus hirtus (Labiateae), Phytochemistry 38 (1995) 637–640.
-
[9] C.H. Zheng, M. Zhang, H. Chen, et al., Luteolin from Flos chrysanthemi and its derivatives: new small molecule Bcl-2 protein inhibitors, Bioorg. Med. Chem. Lett. 24 (2014) 4672–4677.[9] C.H. Zheng, M. Zhang, H. Chen, et al., Luteolin from Flos chrysanthemi and its derivatives: new small molecule Bcl-2 protein inhibitors, Bioorg. Med. Chem. Lett. 24 (2014) 4672–4677.
-
[10] T. Petchmanee, P. Ploypradith, S. Ruchirawat, Solid-supported acids for debenzylation of aryl benzyl ethers, J. Org. Chem. 71 (2006) 2892–2895.[10] T. Petchmanee, P. Ploypradith, S. Ruchirawat, Solid-supported acids for debenzylation of aryl benzyl ethers, J. Org. Chem. 71 (2006) 2892–2895.
-
[11] B.W. Erickson, R. Merrifield, Acid stability of several benzylic protecting groups used in solid-phase peptide synthesis. Rearrangement of O-benzyltyrosine to 3- benzyltyrosine, J. Am. Chem. Soc. 95 (1973) 3750–3756.[11] B.W. Erickson, R. Merrifield, Acid stability of several benzylic protecting groups used in solid-phase peptide synthesis. Rearrangement of O-benzyltyrosine to 3- benzyltyrosine, J. Am. Chem. Soc. 95 (1973) 3750–3756.
-
[12] G. Sagrera, G. Seoane, Acidic rearrangement of (benzyloxy) chalcones: a short synthesis of chamanetin, Synthesis 2009 (2009) 4190–4202.[12] G. Sagrera, G. Seoane, Acidic rearrangement of (benzyloxy) chalcones: a short synthesis of chamanetin, Synthesis 2009 (2009) 4190–4202.
-
[13] E.A. Wallén, K. Dahlén, M. Grøtli, et al., Synthesis of 3-aminomethyl-2-aryl-8- bromo-6-chlorochromones, Org. Lett. 9 (2007) 389–391.[13] E.A. Wallén, K. Dahlén, M. Grøtli, et al., Synthesis of 3-aminomethyl-2-aryl-8- bromo-6-chlorochromones, Org. Lett. 9 (2007) 389–391.
-
[14] K. Dahlén, E.A. Wallén, M. Grøtli, et al., Synthesis of 2,3,6,8-tetrasubstituted chromone scaffolds, J. Org. Chem. 71 (2006) 6863–6871.[14] K. Dahlén, E.A. Wallén, M. Grøtli, et al., Synthesis of 2,3,6,8-tetrasubstituted chromone scaffolds, J. Org. Chem. 71 (2006) 6863–6871.
-
[15] J. Nilsson, E.ù. Nielsen, T. Liljefors, et al., Azaflavones compared to flavones as ligands to the benzodiazepine binding site of brain GABAA receptors, Bioorg. Med. Chem. Lett. 18 (2008) 5713–5716.[15] J. Nilsson, E.ù. Nielsen, T. Liljefors, et al., Azaflavones compared to flavones as ligands to the benzodiazepine binding site of brain GABAA receptors, Bioorg. Med. Chem. Lett. 18 (2008) 5713–5716.
-
[16] A.C. Jain, O.D. Tyagi, S.P. Gupta, et al., Aromatic benzylation. Part IV. Synthesis of nuclear benzylated isoflavones and flavones, Indian J. Chem. B 25B (1986) 166–168.[16] A.C. Jain, O.D. Tyagi, S.P. Gupta, et al., Aromatic benzylation. Part IV. Synthesis of nuclear benzylated isoflavones and flavones, Indian J. Chem. B 25B (1986) 166–168.
-
[17] A.K. Verma, R. Pratap, Chemistry of biologically important flavones, Tetrahedron 68 (2012) 8523–8538.[17] A.K. Verma, R. Pratap, Chemistry of biologically important flavones, Tetrahedron 68 (2012) 8523–8538.
-
[18] M.H. Bhure, C.V. Rode, R.C. Chikate, et al., Phosphotungstic acid as an efficient solid catalyst for intramolecular rearrangement of benzyl phenyl ether to 2-benzyl phenol, Catal. Commun. 8 (2007) 139–144.[18] M.H. Bhure, C.V. Rode, R.C. Chikate, et al., Phosphotungstic acid as an efficient solid catalyst for intramolecular rearrangement of benzyl phenyl ether to 2-benzyl phenol, Catal. Commun. 8 (2007) 139–144.
-
[19] L.S. Hart, C.R. Waddington, Aromatic rearrangements in the benzene series. Part 4. Intramolecularity ofboththe ortho-andpara-rearrangements ofbenzylphenyl ether as shown by labelling experiments, J. Chem. Soc. Perkin Trans. 2 (1985) 1607–1612.[19] L.S. Hart, C.R. Waddington, Aromatic rearrangements in the benzene series. Part 4. Intramolecularity ofboththe ortho-andpara-rearrangements ofbenzylphenyl ether as shown by labelling experiments, J. Chem. Soc. Perkin Trans. 2 (1985) 1607–1612.
-
[20] K. Pitchumani, S. Devanathan, V. Ramamurthy, Modification of photochemical reactivity on formation of inclusion complexes: photorearrangement of benzyl phenyl ethers and methyl phenoxyacetates, J. Photochem. Photobiol. A 69 (1992) 201–208.[20] K. Pitchumani, S. Devanathan, V. Ramamurthy, Modification of photochemical reactivity on formation of inclusion complexes: photorearrangement of benzyl phenyl ethers and methyl phenoxyacetates, J. Photochem. Photobiol. A 69 (1992) 201–208.
-
[21] A. Detsi, M. Majdalani, C.A. Kontogiorgis, D. Hadjipavlou-Litina, P. Kefalas, Natural and synthetic 20-hydroxy-chalcones and aurones: synthesis, characterization and evaluation of the antioxidant and soybean lipoxygenase inhibitory activity, Bioorg. Med. Chem. 17 (2009) 8073–8085.[21] A. Detsi, M. Majdalani, C.A. Kontogiorgis, D. Hadjipavlou-Litina, P. Kefalas, Natural and synthetic 20-hydroxy-chalcones and aurones: synthesis, characterization and evaluation of the antioxidant and soybean lipoxygenase inhibitory activity, Bioorg. Med. Chem. 17 (2009) 8073–8085.
-
[22] N. Jun, G. Hong, K. Jun, Synthesis and evaluation of 20,4',6'-trihydroxychalcones as a new class of tyrosinase inhibitors, Bioorg. Med. Chem. 15 (2007) 2396–2402.[22] N. Jun, G. Hong, K. Jun, Synthesis and evaluation of 20,4',6'-trihydroxychalcones as a new class of tyrosinase inhibitors, Bioorg. Med. Chem. 15 (2007) 2396–2402.
-
[23] K. Fukui, Recognition of stereochemical paths by orbital interaction, Acc. Chem. Res. 4 (1971) 57–64.[23] K. Fukui, Recognition of stereochemical paths by orbital interaction, Acc. Chem. Res. 4 (1971) 57–64.
-
[24] R. Fu, T. Liu, F.W. Chen, Comparing methods for predicting the reactive site of electrophilic substitution, Acta Phys. Chim. Sin. 30 (2014) 628–639.[24] R. Fu, T. Liu, F.W. Chen, Comparing methods for predicting the reactive site of electrophilic substitution, Acta Phys. Chim. Sin. 30 (2014) 628–639.
-
[25] T. Liu, F.W. Chen, Calculation of molecular orbital composition, Acta Chim. Sinica 69 (2011) 2393–2406.[25] T. Liu, F.W. Chen, Calculation of molecular orbital composition, Acta Chim. Sinica 69 (2011) 2393–2406.
-
[26] T. Liu, F.W. Chen, Multiwfn: a multifunctional wavefunction analyzer, J. Comput. Chem. 33 (2012) 580–592.[26] T. Liu, F.W. Chen, Multiwfn: a multifunctional wavefunction analyzer, J. Comput. Chem. 33 (2012) 580–592.
-
[27] Gaussian09, Gaussian, Inc.: Wallingford, CT (2009).[27] Gaussian09, Gaussian, Inc.: Wallingford, CT (2009).
-
-
扫一扫看文章
计量
- PDF下载量: 0
- 文章访问数: 1326
- HTML全文浏览量: 40

下载: