PEGylated WS2 nanosheets for X-ray computed tomography imaging and photothermal therapy
-
关键词:
- WS2 nanosheets
- / CT imaging
- / Photothermal therapy
- / In vivo
English
PEGylated WS2 nanosheets for X-ray computed tomography imaging and photothermal therapy
-
Key words:
- WS2 nanosheets
- / CT imaging
- / Photothermal therapy
- / In vivo
-
-
-
[1] A.H. Castro Neto, N.M.R. Peres, K.S. Novoselov, A.K. Geim, The electronic properties of graphene, Rev. Mod. Phys. 81 (2009) 109-162.[1] A.H. Castro Neto, N.M.R. Peres, K.S. Novoselov, A.K. Geim, The electronic properties of graphene, Rev. Mod. Phys. 81 (2009) 109-162.
-
[2] X. Huang, X. Qi, F. Boey, et al., Graphene-based composites, Chem. Soc. Rev. 41 (2012) 666-686.[2] X. Huang, X. Qi, F. Boey, et al., Graphene-based composites, Chem. Soc. Rev. 41 (2012) 666-686.
-
[3] Y. Liu, X. Dong, P. Chen, Biological and chemical sensors based on graphene materials, Chem. Soc. Rev. 41 (2012) 2283-2307.[3] Y. Liu, X. Dong, P. Chen, Biological and chemical sensors based on graphene materials, Chem. Soc. Rev. 41 (2012) 2283-2307.
-
[4] K.S. Novoselov, D. Jiang, F. Schedin, et al., Two-dimensional atomic crystals, Proc. Natl. Acad. Sci. U. S. A. 102 (2005) 10451-10453.[4] K.S. Novoselov, D. Jiang, F. Schedin, et al., Two-dimensional atomic crystals, Proc. Natl. Acad. Sci. U. S. A. 102 (2005) 10451-10453.
-
[5] B. Chamlagain, Q. Li, N.J. Ghimire, et al., Mobility improvement and temperature dependence in MoSe2 field-effect transistors on parylene-C substrate, ACS Nano 8 (2014) 5079-5088.[5] B. Chamlagain, Q. Li, N.J. Ghimire, et al., Mobility improvement and temperature dependence in MoSe2 field-effect transistors on parylene-C substrate, ACS Nano 8 (2014) 5079-5088.
-
[6] H.S. Matte, A. Gomathi, A.K. Manna, et al., MoS2 and WS2 analogues of graphene, Angew. Chem. Int. Ed. 49 (2010) 4059-4062.[6] H.S. Matte, A. Gomathi, A.K. Manna, et al., MoS2 and WS2 analogues of graphene, Angew. Chem. Int. Ed. 49 (2010) 4059-4062.
-
[7] H.-J. Chuang, X. Tan, N.J. Ghimire, et al., High mobility WSe2 p-and n-type fieldeffect transistors contacted by highly doped graphene for low-resistance contacts, Nano Lett. 14 (2014) 3594-3601.[7] H.-J. Chuang, X. Tan, N.J. Ghimire, et al., High mobility WSe2 p-and n-type fieldeffect transistors contacted by highly doped graphene for low-resistance contacts, Nano Lett. 14 (2014) 3594-3601.
-
[8] M. Chhowalla, H.S. Shin, G. Eda, et al., The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets, Nat. Chem. 5 (2013) 263-275.[8] M. Chhowalla, H.S. Shin, G. Eda, et al., The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets, Nat. Chem. 5 (2013) 263-275.
-
[9] J. Chen, S.-L. Li, Q. Xu, et al., Synthesis of open-ended MoS2 nanotubes and the application as the catalyst of methanation, Chem. Commun. (2002) 1722-1723.[9] J. Chen, S.-L. Li, Q. Xu, et al., Synthesis of open-ended MoS2 nanotubes and the application as the catalyst of methanation, Chem. Commun. (2002) 1722-1723.
-
[10] M. Viršek, A. Jesih, I. Milošević, et al., Raman scattering of the MoS2 and WS2 single nanotubes, Surf. Sci. 601 (2007) 2868-2872.[10] M. Viršek, A. Jesih, I. Milošević, et al., Raman scattering of the MoS2 and WS2 single nanotubes, Surf. Sci. 601 (2007) 2868-2872.
-
[11] X. Zong, H. Yan, G. Wu, et al., Enhancement of photocatalytic H2 evolution on CdS by loading MoS2 as cocatalyst under visible light irradiation, J. Am. Chem. Soc. 130 (2008) 7176-7177.[11] X. Zong, H. Yan, G. Wu, et al., Enhancement of photocatalytic H2 evolution on CdS by loading MoS2 as cocatalyst under visible light irradiation, J. Am. Chem. Soc. 130 (2008) 7176-7177.
-
[12] N. Harada, S. Sato, N. Yokoyama, Computational study on electrical properties of transition metal dichalcogenide field-effect transistors with strained channel, J. Appl. Phys. 115 (2014) 034505.[12] N. Harada, S. Sato, N. Yokoyama, Computational study on electrical properties of transition metal dichalcogenide field-effect transistors with strained channel, J. Appl. Phys. 115 (2014) 034505.
-
[13] RadisavljevicB, RadenovicA, BrivioJ, et al., Single-layer MoS2 transistors, Nat. Nanotechnol. 6 (2011) 147-150.[13] RadisavljevicB, RadenovicA, BrivioJ, et al., Single-layer MoS2 transistors, Nat. Nanotechnol. 6 (2011) 147-150.
-
[14] Q.H. Wang, K. Kalantar-Zadeh, A. Kis, et al., Electronics and optoelectronics of two-dimensional transition metal dichalcogenides, Nat. Nanotechnol. 7 (2012) 699-712.[14] Q.H. Wang, K. Kalantar-Zadeh, A. Kis, et al., Electronics and optoelectronics of two-dimensional transition metal dichalcogenides, Nat. Nanotechnol. 7 (2012) 699-712.
-
[15] X. Liu, G. Zhang, Q.-X. Pei, et al., Phonon thermal conductivity of monolayer MoS2 sheet and nanoribbons, Appl. Phys. Lett. 103 (2013) 133113.[15] X. Liu, G. Zhang, Q.-X. Pei, et al., Phonon thermal conductivity of monolayer MoS2 sheet and nanoribbons, Appl. Phys. Lett. 103 (2013) 133113.
-
[16] N. Perea-López, A.L. Elías, A. Berkdemir, et al., Photosensor device based on few-layered WS2Films, Adv. Funct. Mater. 23 (2013) 5511-5517.[16] N. Perea-López, A.L. Elías, A. Berkdemir, et al., Photosensor device based on few-layered WS2Films, Adv. Funct. Mater. 23 (2013) 5511-5517.
-
[17] G. von Maltzahn, J.H. Park, A. Agrawal, et al., Computationally guided photothermal tumor therapy using long-circulating gold nanorod antennas, Cancer Res. 69 (2009) 3892-3900.[17] G. von Maltzahn, J.H. Park, A. Agrawal, et al., Computationally guided photothermal tumor therapy using long-circulating gold nanorod antennas, Cancer Res. 69 (2009) 3892-3900.
-
[18] J. Shao, R.J. Griffin, E.I. Galanzha, et al., Photothermal nanodrugs: potential of TNF-gold nanospheres for cancer theranostics, Sci. Rep. 3 (2013) 1293.[18] J. Shao, R.J. Griffin, E.I. Galanzha, et al., Photothermal nanodrugs: potential of TNF-gold nanospheres for cancer theranostics, Sci. Rep. 3 (2013) 1293.
-
[19] S.R. Asemi, A. Farajpour, M. Borghei, et al., Thermal effects on the stability of circular graphene sheets via nonlocal continuum mechanics, Lat. Am. J. Solids Struct. 11 (2014) 704-724.[19] S.R. Asemi, A. Farajpour, M. Borghei, et al., Thermal effects on the stability of circular graphene sheets via nonlocal continuum mechanics, Lat. Am. J. Solids Struct. 11 (2014) 704-724.
-
[20] M.B.A. Kunze, D.W. Wright, N.D. Werbeck, et al., Loop interactions and dynamics tune the enzymatic activity of the human histone deacetylase 8, J. Am. Chem. Soc. 135 (2013) 17862-17868.[20] M.B.A. Kunze, D.W. Wright, N.D. Werbeck, et al., Loop interactions and dynamics tune the enzymatic activity of the human histone deacetylase 8, J. Am. Chem. Soc. 135 (2013) 17862-17868.
-
[21] K. Yang, S. Zhang, G. Zhang, et al., Graphene in mice: ultrahigh in vivo tumor uptake and efficient photothermal therapy, Nano Lett. 10 (2010) 3318-3323.[21] K. Yang, S. Zhang, G. Zhang, et al., Graphene in mice: ultrahigh in vivo tumor uptake and efficient photothermal therapy, Nano Lett. 10 (2010) 3318-3323.
-
[22] Q. Tian, M. Tang, Y. Sun, et al., Hydrophilic flower-like CuS superstructures as an efficient 980 nm laser-driven photothermal agent for ablation of cancer cells, Adv. Mater. 23 (2011) 3542-3547.[22] Q. Tian, M. Tang, Y. Sun, et al., Hydrophilic flower-like CuS superstructures as an efficient 980 nm laser-driven photothermal agent for ablation of cancer cells, Adv. Mater. 23 (2011) 3542-3547.
-
[23] Z. Chen, Q. Wang, H. Wang, et al., Ultrathin PEGylated W18O49 nanowires as a new 980 nm-laser-driven photothermal agent for efficient ablation of cancer cells in vivo, Adv. Mater. 25 (2013) 2095-2100.[23] Z. Chen, Q. Wang, H. Wang, et al., Ultrathin PEGylated W18O49 nanowires as a new 980 nm-laser-driven photothermal agent for efficient ablation of cancer cells in vivo, Adv. Mater. 25 (2013) 2095-2100.
-
[24] K. Yang, H. Xu, L. Cheng, et al., In vitro and in vivo near-infrared photothermal therapy of cancer using polypyrrole organic nanoparticles, Adv. Mater. 24 (2012) 5586-5592.[24] K. Yang, H. Xu, L. Cheng, et al., In vitro and in vivo near-infrared photothermal therapy of cancer using polypyrrole organic nanoparticles, Adv. Mater. 24 (2012) 5586-5592.
-
[25] Z. Zhou, B. Kong, C. Yu, et al., Tungsten oxide nanorods: an efficient nanoplatform for tumor CT imaging and photothermal therapy, Sci. Rep. 4 (2014) 3653.[25] Z. Zhou, B. Kong, C. Yu, et al., Tungsten oxide nanorods: an efficient nanoplatform for tumor CT imaging and photothermal therapy, Sci. Rep. 4 (2014) 3653.
-
[26] Z. Zhou, Y. Sun, J. Shen, et al., Iron/iron oxide core/shell nanoparticles for magnetic targeting MRI and near-infrared photothermal therapy, Biomaterials 35 (2014) 7470-7478.[26] Z. Zhou, Y. Sun, J. Shen, et al., Iron/iron oxide core/shell nanoparticles for magnetic targeting MRI and near-infrared photothermal therapy, Biomaterials 35 (2014) 7470-7478.
-
[27] J. Li, F. Jiang, B. Yang, et al., Topological insulator bismuth selenide as a theranostic platform for simultaneous cancer imaging and therapy, Sci. Rep. 3 (2013) 1998.[27] J. Li, F. Jiang, B. Yang, et al., Topological insulator bismuth selenide as a theranostic platform for simultaneous cancer imaging and therapy, Sci. Rep. 3 (2013) 1998.
-
[28] Y. Wang, K.C.L. Black, H. Luehmann, et al., Comparison study of gold nanohexapods, nanorods, and nanocages for photothermal cancer treatment, ACS Nano 7 (2013) 2068-2077.[28] Y. Wang, K.C.L. Black, H. Luehmann, et al., Comparison study of gold nanohexapods, nanorods, and nanocages for photothermal cancer treatment, ACS Nano 7 (2013) 2068-2077.
-
[29] D. Kim, Y.Y. Jeong, S. Jon, A drug-loaded aptamer-gold nanoparticle bioconjugate for combined CT imaging and therapy of prostate cancer, ACS Nano 4 (2010) 3689-3696.[29] D. Kim, Y.Y. Jeong, S. Jon, A drug-loaded aptamer-gold nanoparticle bioconjugate for combined CT imaging and therapy of prostate cancer, ACS Nano 4 (2010) 3689-3696.
-
[30] S.-W. Chou, Y.-H. Shau, P.-C. Wu, et al., In vitro and in vivo studies of FePt nanoparticles for dual modal CT/MRI molecular imaging, J. Am. Chem. Soc. 132 (2010) 13270-13278.[30] S.-W. Chou, Y.-H. Shau, P.-C. Wu, et al., In vitro and in vivo studies of FePt nanoparticles for dual modal CT/MRI molecular imaging, J. Am. Chem. Soc. 132 (2010) 13270-13278.
-
[31] O. Rabin, J. Manuel Perez, J. Grimm, et al., An X-ray computed tomography imaging agent based on long-circulating bismuth sulphide nanoparticles, Nat. Mater. 5 (2006) 118-122.[31] O. Rabin, J. Manuel Perez, J. Grimm, et al., An X-ray computed tomography imaging agent based on long-circulating bismuth sulphide nanoparticles, Nat. Mater. 5 (2006) 118-122.
-
[32] Q. Xiao, W. Bu, Q. Ren, et al., Radiopaque fluorescence-transparent TaOx decorated upconversion nanophosphors for in vivo CT/MR/UCL trimodal imaging, Biomaterials 33 (2012) 7530-7539.[32] Q. Xiao, W. Bu, Q. Ren, et al., Radiopaque fluorescence-transparent TaOx decorated upconversion nanophosphors for in vivo CT/MR/UCL trimodal imaging, Biomaterials 33 (2012) 7530-7539.
-
[33] Y. Liu, K. Ai, J. Liu, et al., A high-performance ytterbium-based nanoparticulate contrast agent for in vivo X-ray computed tomography imaging, Angew. Chem. Int. Ed. 51 (2012) 1437-1442.[33] Y. Liu, K. Ai, J. Liu, et al., A high-performance ytterbium-based nanoparticulate contrast agent for in vivo X-ray computed tomography imaging, Angew. Chem. Int. Ed. 51 (2012) 1437-1442.
-
[34] Q. Tian, J. Hu, Y. Zhu, et al., Sub-10 nm Fe3O4@Cu(2-x)S core-shell nanoparticles for dual-modal imaging and photothermal therapy, J. Am. Chem. Soc. 135 (2013) 8571-8577.[34] Q. Tian, J. Hu, Y. Zhu, et al., Sub-10 nm Fe3O4@Cu(2-x)S core-shell nanoparticles for dual-modal imaging and photothermal therapy, J. Am. Chem. Soc. 135 (2013) 8571-8577.
-
[35] S.S. Chou, B. Kaehr, J. Kim, et al., Chemically exfoliated MoS2 as near-infrared photothermal agents, Angew. Chem. Int. Ed. 52 (2013) 4160-4164.[35] S.S. Chou, B. Kaehr, J. Kim, et al., Chemically exfoliated MoS2 as near-infrared photothermal agents, Angew. Chem. Int. Ed. 52 (2013) 4160-4164.
-
[36] J.A. Faucheaux, A.L.D. Stanton, P.K. Jain, Plasmon resonances of semiconductor nanocrystals: physical principles and new opportunities, J. Phys. Chem. Lett. 5 (2014) 976-985.[36] J.A. Faucheaux, A.L.D. Stanton, P.K. Jain, Plasmon resonances of semiconductor nanocrystals: physical principles and new opportunities, J. Phys. Chem. Lett. 5 (2014) 976-985.
-
-
扫一扫看文章
计量
- PDF下载量: 0
- 文章访问数: 1277
- HTML全文浏览量: 28

下载: