Design, synthesis and biological evaluation of LpxC inhibitors with novel hydrophilic terminus
English
Design, synthesis and biological evaluation of LpxC inhibitors with novel hydrophilic terminus
-
Key words:
- LpxC
- / CHIR-090
- / Kojic acid derivatives
- / Methylsulfone derivatives
- / Metabolic stability
-
-
-
[1] M.F. Brown, U. Reilly, J.A. Abramite, et al., Potent inhibitors of LpxC for the treatment of Gram-negative infections, J. Med. Chem. 55 (2012) 914-923.[1] M.F. Brown, U. Reilly, J.A. Abramite, et al., Potent inhibitors of LpxC for the treatment of Gram-negative infections, J. Med. Chem. 55 (2012) 914-923.
-
[2] T.J.O. Wyckoff, C.R.H. Raetz, J.E. Jackman, Antibacterial and anti-inflammatory agents that target endotoxin, Trends Microbiol. 6 (1998) 154-159.[2] T.J.O. Wyckoff, C.R.H. Raetz, J.E. Jackman, Antibacterial and anti-inflammatory agents that target endotoxin, Trends Microbiol. 6 (1998) 154-159.
-
[3] A.W. Barb, A.L. McClerren, K. Snehelatha, et al., Inhibition of lipid A biosynthesis as the primary mechanism of CHIR-090 antibiotic activity in Escherichia coli, Biochemistry 46 (2007) 3793-3802.[3] A.W. Barb, A.L. McClerren, K. Snehelatha, et al., Inhibition of lipid A biosynthesis as the primary mechanism of CHIR-090 antibiotic activity in Escherichia coli, Biochemistry 46 (2007) 3793-3802.
-
[4] H.R. Onishi, B.A. Pelak, L.S. Gerckens, et al., Antibacterial agents that inhibit lipid A biosynthesis, Science 274 (1996) 980-982.[4] H.R. Onishi, B.A. Pelak, L.S. Gerckens, et al., Antibacterial agents that inhibit lipid A biosynthesis, Science 274 (1996) 980-982.
-
[5] D.A. Whittington, K.M. Rusche, H. Shin, C.A. Fierke, D.W. Christianson, Crystal structure of LpxC, a zinc-dependent deacetylase essential for endotoxin biosynthesis, Proc. Natl. Acad. Sci. U. S. A. 100 (2003) 8146-8150.[5] D.A. Whittington, K.M. Rusche, H. Shin, C.A. Fierke, D.W. Christianson, Crystal structure of LpxC, a zinc-dependent deacetylase essential for endotoxin biosynthesis, Proc. Natl. Acad. Sci. U. S. A. 100 (2003) 8146-8150.
-
[6] B.E. Coggins, X.C. Li, A.L. McClerren, et al., Structure of the LpxC deacetylase with a bound substrate-analog inhibitor, Nat. Struct. Mol. Biol. 10 (2003) 645-651.[6] B.E. Coggins, X.C. Li, A.L. McClerren, et al., Structure of the LpxC deacetylase with a bound substrate-analog inhibitor, Nat. Struct. Mol. Biol. 10 (2003) 645-651.
-
[7] M.H. Chen, M.G. Steiner, S.E. de Laszlo, et al., Carbohydroxamido-oxazolidines: antibacterial agents that target lipid A biosynthesis, Bioorg. Med. Chem. Lett. 9 (1999) 313-318.[7] M.H. Chen, M.G. Steiner, S.E. de Laszlo, et al., Carbohydroxamido-oxazolidines: antibacterial agents that target lipid A biosynthesis, Bioorg. Med. Chem. Lett. 9 (1999) 313-318.
-
[8] J.E. Jackman, C.A. Fierke, L.N. Tumey, et al., Antibacterial agents that target lipid A biosynthesis in gram-negative bacteria, J. Biol. Chem. 275 (2000) 11002-11009.[8] J.E. Jackman, C.A. Fierke, L.N. Tumey, et al., Antibacterial agents that target lipid A biosynthesis in gram-negative bacteria, J. Biol. Chem. 275 (2000) 11002-11009.
-
[9] M.C. Pirrung, L.N. Tumey, C.R.H. Raetz, et al., Inhibition of the antibacterial target UDP-(3-O-acyl)-N-acetylglucosamine deacetylase (LpxC): isoxazoline zinc amidase inhibitors bearing diverse metal binding groups, J. Med. Chem. 45 (2002) 4359-4370.[9] M.C. Pirrung, L.N. Tumey, C.R.H. Raetz, et al., Inhibition of the antibacterial target UDP-(3-O-acyl)-N-acetylglucosamine deacetylase (LpxC): isoxazoline zinc amidase inhibitors bearing diverse metal binding groups, J. Med. Chem. 45 (2002) 4359-4370.
-
[10] P. Calí, L. Nærum, S. Mukhija, A. Hjelmencrantz, Isoxazole-3-hydroxamic acid derivatives as peptide deformylase inhibitors and potential antibacterial agents, Bioorg. Med. Chem. Lett. 14 (2004) 5997-6000.[10] P. Calí, L. Nærum, S. Mukhija, A. Hjelmencrantz, Isoxazole-3-hydroxamic acid derivatives as peptide deformylase inhibitors and potential antibacterial agents, Bioorg. Med. Chem. Lett. 14 (2004) 5997-6000.
-
[11] J.M. Clements, F. Coignard, I. Johnson, et al., Antibacterial activities and characterization of novel inhibitors of LpxC, Antimicrob. Agents Chemother. 46 (2002) 1793-1799.[11] J.M. Clements, F. Coignard, I. Johnson, et al., Antibacterial activities and characterization of novel inhibitors of LpxC, Antimicrob. Agents Chemother. 46 (2002) 1793-1799.
-
[12] J. Zhang, L. Zhang, X. Li, W. Xu, UDP-3-O-(R-3-hydroxymyristoyl)-N-acetylglucosamine deacetylase (LpxC) inhibitors: a new class of antibacterial agents, Curr. Med. Chem. 19 (2012) 2038-2050.[12] J. Zhang, L. Zhang, X. Li, W. Xu, UDP-3-O-(R-3-hydroxymyristoyl)-N-acetylglucosamine deacetylase (LpxC) inhibitors: a new class of antibacterial agents, Curr. Med. Chem. 19 (2012) 2038-2050.
-
[13] C.J. Lee, X.F. Liang, X. Chen, et al., Species-specific and inhibitor-dependent conformations of LpxC: implications for antibiotic design, Chem. Biol. 18 (2011) 38-47.[13] C.J. Lee, X.F. Liang, X. Chen, et al., Species-specific and inhibitor-dependent conformations of LpxC: implications for antibiotic design, Chem. Biol. 18 (2011) 38-47.
-
[14] X.F. Liang, C.J. Lee, X. Chen, et al., Syntheses, structures and antibiotic activities of LpxC inhibitors based on the diacetylene scaffold, Bioorg. Med. Chem. 19 (2011) 852-860.[14] X.F. Liang, C.J. Lee, X. Chen, et al., Syntheses, structures and antibiotic activities of LpxC inhibitors based on the diacetylene scaffold, Bioorg. Med. Chem. 19 (2011) 852-860.
-
[15] J.I. Montgomery, M.F. Brown, U. Reilly, et al., Pyridone methylsulfone hydroxamate LpxC inhibitors for the treatment of serious gram-negative infections, J. Med. Chem. 55 (2012) 1662-1670.[15] J.I. Montgomery, M.F. Brown, U. Reilly, et al., Pyridone methylsulfone hydroxamate LpxC inhibitors for the treatment of serious gram-negative infections, J. Med. Chem. 55 (2012) 1662-1670.
-
[16] U. Möllmann, L. Heinisch, A. Bauernfeind, T. Kö hler, D. Ankel-Fuchs, Siderophores as drug delivery agents: application of the "Trojan Horse" strategy, Biometals 22 (2009) 615-624.[16] U. Möllmann, L. Heinisch, A. Bauernfeind, T. Kö hler, D. Ankel-Fuchs, Siderophores as drug delivery agents: application of the "Trojan Horse" strategy, Biometals 22 (2009) 615-624.
-
[17] M.G.P. Page, C. Dantier, E. Desarbre, In vitro properties of BAL30072, a novel siderophore sulfactamwith activity against multiresistant Gram-negative bacilli, Antimicrob. Agents Chemother. 54 (2010) 2291-2302.[17] M.G.P. Page, C. Dantier, E. Desarbre, In vitro properties of BAL30072, a novel siderophore sulfactamwith activity against multiresistant Gram-negative bacilli, Antimicrob. Agents Chemother. 54 (2010) 2291-2302.
-
[18] M.E. Flanagan, S.J. Brickner, M. Lall, et al., Preparation, gram-negative antibacterial activity, and hydrolytic stability of novel siderophore-conjugated monocarbam diols, ACS Med. Chem. Lett. 2 (2011) 385-390.[18] M.E. Flanagan, S.J. Brickner, M. Lall, et al., Preparation, gram-negative antibacterial activity, and hydrolytic stability of novel siderophore-conjugated monocarbam diols, ACS Med. Chem. Lett. 2 (2011) 385-390.
-
[19] X.F. Liang, C.J. Lee, J.S. Zhao, E.J. Toone, P. Zhou, Synthesis, structure, and antibiotic activity of aryl-substituted LpxC inhibitors, J. Med. Chem. 56 (2013) 6954-6966.[19] X.F. Liang, C.J. Lee, J.S. Zhao, E.J. Toone, P. Zhou, Synthesis, structure, and antibiotic activity of aryl-substituted LpxC inhibitors, J. Med. Chem. 56 (2013) 6954-6966.
-
-
扫一扫看文章
计量
- PDF下载量: 0
- 文章访问数: 1221
- HTML全文浏览量: 32

下载: