Heterometallic zinc uranium oxyfluorides incorporating imidazole ligands
-
关键词:
- Uranium
- / Imidazole
- / Crystal structure
- / Luminescence
English
Heterometallic zinc uranium oxyfluorides incorporating imidazole ligands
-
Key words:
- Uranium
- / Imidazole
- / Crystal structure
- / Luminescence
-
-
-
[1] W. Wang, Y. Yuan, F.X. Sun, G.S. Zhu, Targeted synthesis of novel porous aromatic frameworks with selective separation of CO2/CH4 and CO2/N2, Chin. Chem. Lett. 25 (2014) 1407-1410.[1] W. Wang, Y. Yuan, F.X. Sun, G.S. Zhu, Targeted synthesis of novel porous aromatic frameworks with selective separation of CO2/CH4 and CO2/N2, Chin. Chem. Lett. 25 (2014) 1407-1410.
-
[2] Z.Y. Du, T.T. Xu, B. Huang, et al., Switchable guest molecular dynamics in a perovskite-like coordination polymer toward sensitive thermoresponsive dielectric materials, Angew. Chem. Int. Ed. 54 (2015) 914-918.[2] Z.Y. Du, T.T. Xu, B. Huang, et al., Switchable guest molecular dynamics in a perovskite-like coordination polymer toward sensitive thermoresponsive dielectric materials, Angew. Chem. Int. Ed. 54 (2015) 914-918.
-
[3] Y.X. Sun, W.Y. Sun, Influence of temperature on metal-organic frameworks, Chin. Chem. Lett. 25 (2014) 823-828.[3] Y.X. Sun, W.Y. Sun, Influence of temperature on metal-organic frameworks, Chin. Chem. Lett. 25 (2014) 823-828.
-
[4] Y. Peng, V. Krungleviciute, I. Eryazici, et al., Methane storage in metal-organic frameworks: current records, surprise findings, and challenges, J. Am. Chem. Soc. 135 (2013) 11887-11894.[4] Y. Peng, V. Krungleviciute, I. Eryazici, et al., Methane storage in metal-organic frameworks: current records, surprise findings, and challenges, J. Am. Chem. Soc. 135 (2013) 11887-11894.
-
[5] T. Zheng, M. Ren, S.S. Bao, L.M. Zheng, M2(pbtcH)(phen)2(H2O)2 [M(II)≡Co, Ni]: mixed-ligated metal phosphonates based on 5-phosphonatophenyl-1,2,4-tricarboxylic acid showing double chain structures, Chin. Chem. Lett. 25 (2014) 835-838.[5] T. Zheng, M. Ren, S.S. Bao, L.M. Zheng, M2(pbtcH)(phen)2(H2O)2 [M(II)≡Co, Ni]: mixed-ligated metal phosphonates based on 5-phosphonatophenyl-1,2,4-tricarboxylic acid showing double chain structures, Chin. Chem. Lett. 25 (2014) 835-838.
-
[6] M.B. Andrews, C.L. Cahill, Uranyl bearing hybrid materials: synthesis, speciation, and solid-state structures, Chem. Rev. 113 (2013) 1121-1136.[6] M.B. Andrews, C.L. Cahill, Uranyl bearing hybrid materials: synthesis, speciation, and solid-state structures, Chem. Rev. 113 (2013) 1121-1136.
-
[7] T. Loiseau, I. Mihalcea, N. Henry, C. Volkringer, The crystal chemistry of uranium carboxylates, Coord. Chem. Rev. 266-267 (2014) 69-109.[7] T. Loiseau, I. Mihalcea, N. Henry, C. Volkringer, The crystal chemistry of uranium carboxylates, Coord. Chem. Rev. 266-267 (2014) 69-109.
-
[8] K.X. Wang, J.S. Chen, Extended structures and physicochemical properties of uranyl-organic compounds, Acc. Chem. Res. 44 (2011) 531-540.[8] K.X. Wang, J.S. Chen, Extended structures and physicochemical properties of uranyl-organic compounds, Acc. Chem. Res. 44 (2011) 531-540.
-
[9] J. Qiu, P.C. Burns, Clusters of actinides with oxide, peroxide, or hydroxide bridges, Chem. Rev. 113 (2013) 1097-1120.[9] J. Qiu, P.C. Burns, Clusters of actinides with oxide, peroxide, or hydroxide bridges, Chem. Rev. 113 (2013) 1097-1120.
-
[10] (a) Z.T. Yu, Z.L. Liao, Y.S. Jiang, et al., Construction of a microporous inorganic-organic hybrid compound with uranyl units, Chem. Commun. (2004) 1814-1815; (b) W. Chen, H.M. Yuan, J.Y. Wang, et al., Synthesis, structure, and photoelectronic effects of a uranium-zinc-organic coordination polymer containing infinite metal oxide sheets, J. Am. Chem. Soc. 125 (2003) 9266-9267.[10] (a) Z.T. Yu, Z.L. Liao, Y.S. Jiang, et al., Construction of a microporous inorganic-organic hybrid compound with uranyl units, Chem. Commun. (2004) 1814-1815; (b) W. Chen, H.M. Yuan, J.Y. Wang, et al., Synthesis, structure, and photoelectronic effects of a uranium-zinc-organic coordination polymer containing infinite metal oxide sheets, J. Am. Chem. Soc. 125 (2003) 9266-9267.
-
[11] (a) J. Olchowka, C. Falaise, C. Volkringer, N. Henry, T. Loiseau, Structural observations of heterometallic uranyl copper(II) carboxylates and their solid-state topotactic transformation upon dehydration, Chem. Eur. J. 19 (2013) 2012-2022; (b) C. Volkringer, N. Henry, S. Grandjean, T. Loiseau, Uranyl and/or rare-earth mellitates in extended organic-inorganic networks: a unique case of heterometallic cation-cation interaction with UVI = O-LnIII Bonding (Ln = Ce, Nd), J. Am. Chem. Soc. 134 (2012) 1275-1283; (c) J. Olchowka, C. Volkringer, N. Henry, T. Loiseau, Synthesis, structural characterization, and dehydration analysis of uranyl zinc mellitate, (UO2)Zn(H2O)4(H2-mel)·2H2O, Eur. J. Inorg. Chem. 2013 (2013) 2109-2114.[11] (a) J. Olchowka, C. Falaise, C. Volkringer, N. Henry, T. Loiseau, Structural observations of heterometallic uranyl copper(II) carboxylates and their solid-state topotactic transformation upon dehydration, Chem. Eur. J. 19 (2013) 2012-2022; (b) C. Volkringer, N. Henry, S. Grandjean, T. Loiseau, Uranyl and/or rare-earth mellitates in extended organic-inorganic networks: a unique case of heterometallic cation-cation interaction with UVI = O-LnIII Bonding (Ln = Ce, Nd), J. Am. Chem. Soc. 134 (2012) 1275-1283; (c) J. Olchowka, C. Volkringer, N. Henry, T. Loiseau, Synthesis, structural characterization, and dehydration analysis of uranyl zinc mellitate, (UO2)Zn(H2O)4(H2-mel)·2H2O, Eur. J. Inorg. Chem. 2013 (2013) 2109-2114.
-
[12] (a) P. Thuéry, Molecular and polymeric uranyl and thorium complexes with sulfonate-containing ligands, Eur. J. Inorg. Chem. 2014 (2014) 58-68; (b) P. Thuéry, Sulfonate complexes of actinide ions: structural diversity in uranyl complexes with 2-sulfobenzoate, Inorg. Chem. 52 (2013) 435-447.[12] (a) P. Thuéry, Molecular and polymeric uranyl and thorium complexes with sulfonate-containing ligands, Eur. J. Inorg. Chem. 2014 (2014) 58-68; (b) P. Thuéry, Sulfonate complexes of actinide ions: structural diversity in uranyl complexes with 2-sulfobenzoate, Inorg. Chem. 52 (2013) 435-447.
-
[13] (a) P.M. Cantos, L.J. Jouffret, R.E. Wilson, P.C. Burns, C.L. Cahill, Series of uranyl-4,4'-biphenyldicarboxylates and an occurrence of a cation-cation interaction: hydrothermal synthesis and in situ Raman studies, Inorg. Chem. 52 (2013) 9487-9495; (b) K.E. Knope, D.T. de Lill, C.E. Rowland, et al., Uranyl sensitization of samarium(III) luminescence in a two-dimensional coordination polymer, Inorg. Chem. 51 (2012) 201-206.[13] (a) P.M. Cantos, L.J. Jouffret, R.E. Wilson, P.C. Burns, C.L. Cahill, Series of uranyl-4,4'-biphenyldicarboxylates and an occurrence of a cation-cation interaction: hydrothermal synthesis and in situ Raman studies, Inorg. Chem. 52 (2013) 9487-9495; (b) K.E. Knope, D.T. de Lill, C.E. Rowland, et al., Uranyl sensitization of samarium(III) luminescence in a two-dimensional coordination polymer, Inorg. Chem. 51 (2012) 201-206.
-
[14] (a) T. Tian, W.T. Yang, H. Wang, et al., Syntheses and structures of uranyl ethylenediphosphonates: from layers to elliptical nanochannels, Inorg. Chem. 52 (2013) 7100-7106; (b) T. Tian, W.T. Yang, H. Wang, S. Dang, Z.M. Sun, Flexible diphosphonic acids for the isolation of uranyl hybrids with heterometallic UVI≡O-ZnII cation-cation interactions, Inorg. Chem. 52 (2013) 8288-8290.[14] (a) T. Tian, W.T. Yang, H. Wang, et al., Syntheses and structures of uranyl ethylenediphosphonates: from layers to elliptical nanochannels, Inorg. Chem. 52 (2013) 7100-7106; (b) T. Tian, W.T. Yang, H. Wang, S. Dang, Z.M. Sun, Flexible diphosphonic acids for the isolation of uranyl hybrids with heterometallic UVI≡O-ZnII cation-cation interactions, Inorg. Chem. 52 (2013) 8288-8290.
-
[15] (a) D.W. Juan, T.E. Albrecht-Schmitt, Chiral uranium phosphonates constructed from achiral units with three-dimensional frameworks, Chem. Commun. 48 (2012) 3827-3829; (b) P.O. Adelani, T.E. Albrecht-Schmitt, Differential ion exchange in elliptical uranyl diphosphonate nanotubules, Angew. Chem. Int. Ed. 49 (2010) 8909-8911; (c) A.G.D. Nelson, E.V. Alekseev, R.C. Ewing, T.E. Albrecht-Schmitt, Barium uranyl diphosphonates, J. Solid State Chem. 192 (2012) 153-160.[15] (a) D.W. Juan, T.E. Albrecht-Schmitt, Chiral uranium phosphonates constructed from achiral units with three-dimensional frameworks, Chem. Commun. 48 (2012) 3827-3829; (b) P.O. Adelani, T.E. Albrecht-Schmitt, Differential ion exchange in elliptical uranyl diphosphonate nanotubules, Angew. Chem. Int. Ed. 49 (2010) 8909-8911; (c) A.G.D. Nelson, E.V. Alekseev, R.C. Ewing, T.E. Albrecht-Schmitt, Barium uranyl diphosphonates, J. Solid State Chem. 192 (2012) 153-160.
-
[16] (a) M.B. Doran, B.E. Cockbain, A.J. Norquist, D. O'Hare, The effects of hydrofluoric acid addition on the hydrothermal synthesis of templated uranium sulfates, Dalton Trans. (2004) 3810-3814; (b) K. Min Ok, M.B. Doran, D. O'Hare, [(CH3)2NH(CH2)2NH(CH3)2][(UO2)2 F2(HPO4)2]: a new organically templated layered uranium phosphate fluoride -synthesis, structure, characterization, and ion-exchange reactions, Dalton Trans. (2007) 3325-3329; (c) K. Min Ok, D. O'Hare, Hydrothermal synthesis, crystal structure, and characterization of a new pseudo-two-dimensional uranyl oxyfluoride,[N(C2H5)4]2[(UO2)4(OH2)3F10], J. Solid State Chem. 180 (2007) 446-452.[16] (a) M.B. Doran, B.E. Cockbain, A.J. Norquist, D. O'Hare, The effects of hydrofluoric acid addition on the hydrothermal synthesis of templated uranium sulfates, Dalton Trans. (2004) 3810-3814; (b) K. Min Ok, M.B. Doran, D. O'Hare, [(CH3)2NH(CH2)2NH(CH3)2][(UO2)2 F2(HPO4)2]: a new organically templated layered uranium phosphate fluoride -synthesis, structure, characterization, and ion-exchange reactions, Dalton Trans. (2007) 3325-3329; (c) K. Min Ok, D. O'Hare, Hydrothermal synthesis, crystal structure, and characterization of a new pseudo-two-dimensional uranyl oxyfluoride,[N(C2H5)4]2[(UO2)4(OH2)3F10], J. Solid State Chem. 180 (2007) 446-452.
-
[17] (a) C.S. Lee, C.H. Lin, S.L. Wang, K.H. Lii, [Na7UVIO2(UVO)2(UV/VIO2)2Si4O16]: a mixed-valence uranium silicate, Angew. Chem. Int. Ed. 49 (2010) 4254-4256; (b) Q.B. Nguyen, H.K. Liu, W.J. Chang, K.H. Lii, Cs8UVI(UVIO2)3(Ge3O9)3·3H2O: a mixed-valence uranium germanate with 9-ring channels, Inorg. Chem. 50 (2011) 4241-4243.[17] (a) C.S. Lee, C.H. Lin, S.L. Wang, K.H. Lii, [Na7UVIO2(UVO)2(UV/VIO2)2Si4O16]: a mixed-valence uranium silicate, Angew. Chem. Int. Ed. 49 (2010) 4254-4256; (b) Q.B. Nguyen, H.K. Liu, W.J. Chang, K.H. Lii, Cs8UVI(UVIO2)3(Ge3O9)3·3H2O: a mixed-valence uranium germanate with 9-ring channels, Inorg. Chem. 50 (2011) 4241-4243.
-
[18] P.S. Halasyamani, S.M. Walker, D. O'Hare, The first open framework actinide material (C4N2H12)U2O4F6 (MUF-1), J. Am. Chem. Soc. 121 (1999) 7415-7416.[18] P.S. Halasyamani, S.M. Walker, D. O'Hare, The first open framework actinide material (C4N2H12)U2O4F6 (MUF-1), J. Am. Chem. Soc. 121 (1999) 7415-7416.
-
[19] K. Min Ok, M.B. Doran, D. O'Hare, [N(CH3)4][(UO2)2F5]: a new organically templated open-framework uranium oxide fluoride (MUF-2), J. Mater. Chem. 16 (2006) 3366-3368.[19] K. Min Ok, M.B. Doran, D. O'Hare, [N(CH3)4][(UO2)2F5]: a new organically templated open-framework uranium oxide fluoride (MUF-2), J. Mater. Chem. 16 (2006) 3366-3368.
-
[20] C.M. Wang, C.H. Liao, H.M. Kao, K.H. Lii, Hydrothermal synthesis and characterization of (UO2)2F8(H2O)2Zn2(4,4'-bpy)2·(4,4'-bpy), a mixed-metal uranyl aquofluoride with a pillared layer structure, Inorg. Chem. 44 (2005) 6294-6298.[20] C.M. Wang, C.H. Liao, H.M. Kao, K.H. Lii, Hydrothermal synthesis and characterization of (UO2)2F8(H2O)2Zn2(4,4'-bpy)2·(4,4'-bpy), a mixed-metal uranyl aquofluoride with a pillared layer structure, Inorg. Chem. 44 (2005) 6294-6298.
-
[21] (a) W.T. Yang, F.Y. Yi, T. Tian, W.G. Tian, S.Z. Sun, Structural variation within heterometallic uranyl hybrids based on flexible alkyldiphosphonate ligands, Cryst. Growth Des. 14 (2014) 1366-1374; (b) W.T. Yang, S. Dang, H. Wang, et al., Synthesis, structures, and properties of uranyl hybrids constructed by a variety of mono-and polycarboxylic acids, Inorg. Chem. 52 (2013) 12394-12402.[21] (a) W.T. Yang, F.Y. Yi, T. Tian, W.G. Tian, S.Z. Sun, Structural variation within heterometallic uranyl hybrids based on flexible alkyldiphosphonate ligands, Cryst. Growth Des. 14 (2014) 1366-1374; (b) W.T. Yang, S. Dang, H. Wang, et al., Synthesis, structures, and properties of uranyl hybrids constructed by a variety of mono-and polycarboxylic acids, Inorg. Chem. 52 (2013) 12394-12402.
-
[22] S.V. Matthew, H.W. Timothy, S-nitrosothiol and nitric oxide reactivity at zinc thiolates, Inorg. Chem. 48 (2009) 5605-5607.[22] S.V. Matthew, H.W. Timothy, S-nitrosothiol and nitric oxide reactivity at zinc thiolates, Inorg. Chem. 48 (2009) 5605-5607.
-
[23] A.M.S. Obbade, M. Rivenet, C. Renard, F. Abraham, [La(UO2)V2O7][(UO2)(VO4)] the first lanthanum uranyl-vanadate with structure built from two types of sheets based upon the uranophane anion-topology, J. Solid State Chem. 185 (2012) 180-186.[23] A.M.S. Obbade, M. Rivenet, C. Renard, F. Abraham, [La(UO2)V2O7][(UO2)(VO4)] the first lanthanum uranyl-vanadate with structure built from two types of sheets based upon the uranophane anion-topology, J. Solid State Chem. 185 (2012) 180-186.
-
[24] T.G. Parker, J.N. Cross, M.J. Polinski, J. Lin, T.E. Albrecht-Schmitt, Ionothermal and hydrothermal flux syntheses of five new uranyl phosphonates, Cryst. Growth Des. 14 (2014) 228-235.[24] T.G. Parker, J.N. Cross, M.J. Polinski, J. Lin, T.E. Albrecht-Schmitt, Ionothermal and hydrothermal flux syntheses of five new uranyl phosphonates, Cryst. Growth Des. 14 (2014) 228-235.
-
[25] P.O. Adelani, T.E. Albrecht-Schmitt, Syntheses of uranyl diphosphonate compounds using encapsulated cations as structure directing agents, Cryst. Growth Des. 11 (2011) 4227-4237.[25] P.O. Adelani, T.E. Albrecht-Schmitt, Syntheses of uranyl diphosphonate compounds using encapsulated cations as structure directing agents, Cryst. Growth Des. 11 (2011) 4227-4237.
-
-
扫一扫看文章
计量
- PDF下载量: 0
- 文章访问数: 1310
- HTML全文浏览量: 24

下载: