Mechanism and reactivity of rhodium-catalyzed intermolecular [5 + 1] cycloaddition of 3-acyloxy-1,4-enyne (ACE) and CO: A computational study

Xiao-Na Ke Casi M. Schienebeck Chen-Chen Zhou Xiu-Fang Xu Wei-Ping Tang

Citation:  Xiao-Na Ke, Casi M. Schienebeck, Chen-Chen Zhou, Xiu-Fang Xu, Wei-Ping Tang. Mechanism and reactivity of rhodium-catalyzed intermolecular [5 + 1] cycloaddition of 3-acyloxy-1,4-enyne (ACE) and CO: A computational study[J]. Chinese Chemical Letters, 2015, 26(6): 730-734. doi: 10.1016/j.cclet.2015.03.016 shu

Mechanism and reactivity of rhodium-catalyzed intermolecular [5 + 1] cycloaddition of 3-acyloxy-1,4-enyne (ACE) and CO: A computational study

    通讯作者: Xiu-Fang Xu,
    Wei-Ping Tang,
  • 基金项目:

    We are grateful to Tianjin Natural Science Foundation (No. 14JCYBJC20100 X.X.) (No. 14JCYBJC20100 X.X.)

    NIH (No. R01GM088285 W.T.) for financial support. (No. R01GM088285 W.T.)

摘要: The first theoretical study on the mechanism of [RhCl(CO)2]2-catalyzed [5 + 1] cycloadditions of 3-acyloxy-1,4-enyne (ACE) and CO has been performed using density functional theory (DFT) calculations. The effect of ester on reactivity of this reaction has been investigated. The computational results have revealed that the preferred catalytic cycle involves the sequential steps of 1,2-acyloxy migration, CO insertion, reductive elimination to form ketene intermediate, 6π-electroncyclization, and aromatization to afford the resorcinol product. The 1,2-acyloxy migration is found to be the rate-determining step of the catalytic cycle. The electron-rich p-dimethylaminobenzoate substrate promotes 1,2-acyloxy migration and significantly increases the reactivity by stabilizing the positive charge building up in the oxocyclic transition state.

English

  • 
    1. [1] For selected examples, see: (a) M Lautens, W. Klute, W. Tam, Transition metal-mediated cycloaddition reactions, Chem. Rev. 96 (1996) 49-92;(b) H.W. Fruhauf, Metal-assisted cycloaddition reactions in organotransition metal chemistry, Chem. Rev. 97 (1997) 523-596; (c) B.M. Trost, M.J. Krische, Transition metal catalyzed cycloisomerizations, Synlett (1998) 1-16; (d) C. Aubert, O. Buisine, M. Malacria, The behavior of 1,n-enynes in the presence of transition metals, Chem. Rev. 102 (2002) 813-834; (e) P.A. Evans, Modern Rhodium-Catalyzed Organic Reactions, Wiley-VCH, Weinheim, 2005; (f) V. Michelet, P.Y. Toullec, J.P. Genet, Cycloisomerization of 1,n-enynes: challenging metal-catalyzed rearrangements and mechanistic insights, Angew. Chem. Int. Ed. 47 (2008) 4268-4315; (g) Z.X. Yu, Y. Wang, Y. Wang, Transition-metal-catalyzed cycloadditions for the synthesis of eight-membered carbocycles, Chem. Asian J. 5 (2010) 1072-1088; (h) P.A. Inglesby, P.A. Evans, Stereoselective transition metal-catalysed higherorder carbocyclisation reactions, Chem. Soc. Rev. 39 (2010) 2791-2805; (i) Z. Chen, X. Han, J.H. Liang, et al., Cycloaddition reactions of benzyne with olefins, Chin. Chem. Lett. 25 (2014) 1535-1539; (j) H. Mehrabi, M. Hatami-Pour, Facile, one-pot synthesis of new phenanthridine derivatives through 1,4-dipolar cycloaddition of phenanthridine, activated acetylenes, and aromatic aldehydes, Chin. Chem. Lett. 25 (2014) 1495-1498.[1] For selected examples, see: (a) M Lautens, W. Klute, W. Tam, Transition metal-mediated cycloaddition reactions, Chem. Rev. 96 (1996) 49-92;(b) H.W. Fruhauf, Metal-assisted cycloaddition reactions in organotransition metal chemistry, Chem. Rev. 97 (1997) 523-596; (c) B.M. Trost, M.J. Krische, Transition metal catalyzed cycloisomerizations, Synlett (1998) 1-16; (d) C. Aubert, O. Buisine, M. Malacria, The behavior of 1,n-enynes in the presence of transition metals, Chem. Rev. 102 (2002) 813-834; (e) P.A. Evans, Modern Rhodium-Catalyzed Organic Reactions, Wiley-VCH, Weinheim, 2005; (f) V. Michelet, P.Y. Toullec, J.P. Genet, Cycloisomerization of 1,n-enynes: challenging metal-catalyzed rearrangements and mechanistic insights, Angew. Chem. Int. Ed. 47 (2008) 4268-4315; (g) Z.X. Yu, Y. Wang, Y. Wang, Transition-metal-catalyzed cycloadditions for the synthesis of eight-membered carbocycles, Chem. Asian J. 5 (2010) 1072-1088; (h) P.A. Inglesby, P.A. Evans, Stereoselective transition metal-catalysed higherorder carbocyclisation reactions, Chem. Soc. Rev. 39 (2010) 2791-2805; (i) Z. Chen, X. Han, J.H. Liang, et al., Cycloaddition reactions of benzyne with olefins, Chin. Chem. Lett. 25 (2014) 1535-1539; (j) H. Mehrabi, M. Hatami-Pour, Facile, one-pot synthesis of new phenanthridine derivatives through 1,4-dipolar cycloaddition of phenanthridine, activated acetylenes, and aromatic aldehydes, Chin. Chem. Lett. 25 (2014) 1495-1498.

    2. [2] (a) Y. Huang, X. Lu, Palladium catalyzed annulation reaction using a bifunctional allylic alkylating agent, Tetrahedron Lett. 29 (1988) 5663-5664; (b) X.C. He, B. Wang, B.D. Bai, Studies on asymmetric synthesis of huperzine A-1. Palladium-catalyzed asymmetric bicycloannulation of 5,6,7,8-tetrahydro-2-methoxy-6-oxo-5-quinolinecarboxylic esters, Tetrahedron Lett. 39 (1998) 411-414.[2] (a) Y. Huang, X. Lu, Palladium catalyzed annulation reaction using a bifunctional allylic alkylating agent, Tetrahedron Lett. 29 (1988) 5663-5664; (b) X.C. He, B. Wang, B.D. Bai, Studies on asymmetric synthesis of huperzine A-1. Palladium-catalyzed asymmetric bicycloannulation of 5,6,7,8-tetrahydro-2-methoxy-6-oxo-5-quinolinecarboxylic esters, Tetrahedron Lett. 39 (1998) 411-414.

    3. [3] (a) W. Carruthers, Cycloaddition Reactions in Organic Synthesis, Pergamon, Oxford, 1990; (b) P.A. Wender, T.E. Jenkins, S. Suzuki, Transition metal-catalyzed intramolecular[4 + 2] Diene-Allene cycloadditions: a convenient synthesis of angularly substituted ring systems with provision for catalyst-controlled chemo-and stereo-complementarity, J. Am. Chem. Soc. 117 (1995) 1843-1844; (c) D.J.R. O'Mahony, D.B. Belanger, T. Livinghouse, Substrate control of stereoselection in the rhodium(I) catalyzed intramolecular [4 + 2] cycloaddition reaction, Org. Biomol. Chem. 1 (2003) 2038-2040; (d) K. Aikawa, S. Akutagawa, K. Mikami, Asymmetric synergy between chiral dienes and diphosphines in cationic Rh(I)-catalyzed intramolecular [4 + 2] cycloaddition, J. Am. Chem. Soc. 128 (2006) 12648-12649; (e) A. Fürstner, C.C. Stimson, Two manifolds for metal-catalyzed intramolecular Diels-Alder reactions of unactivated alkynes, Angew. Chem. Int. Ed. 46 (2007) 8845-8849; (f) H. Kusama, Y. Karibe, Y. Onizawa, N. Iwasawa, Gold-catalyzed tandem cyclization of dienol silyl ethers for the preparation of bicyclo[4.3.0]nonane derivatives, Angew. Chem. Int. Ed. 49 (2010) 4269-4272; (g) S.M. Kim, J.H. Park, Y.K. Chung, Au(PPh3)OPOF2-catalyzed intramolecular[4 + 2] cycloaddition reaction of dienynes, Chem. Commun. 47 (2011) 6719-6721.[3] (a) W. Carruthers, Cycloaddition Reactions in Organic Synthesis, Pergamon, Oxford, 1990; (b) P.A. Wender, T.E. Jenkins, S. Suzuki, Transition metal-catalyzed intramolecular[4 + 2] Diene-Allene cycloadditions: a convenient synthesis of angularly substituted ring systems with provision for catalyst-controlled chemo-and stereo-complementarity, J. Am. Chem. Soc. 117 (1995) 1843-1844; (c) D.J.R. O'Mahony, D.B. Belanger, T. Livinghouse, Substrate control of stereoselection in the rhodium(I) catalyzed intramolecular [4 + 2] cycloaddition reaction, Org. Biomol. Chem. 1 (2003) 2038-2040; (d) K. Aikawa, S. Akutagawa, K. Mikami, Asymmetric synergy between chiral dienes and diphosphines in cationic Rh(I)-catalyzed intramolecular [4 + 2] cycloaddition, J. Am. Chem. Soc. 128 (2006) 12648-12649; (e) A. Fürstner, C.C. Stimson, Two manifolds for metal-catalyzed intramolecular Diels-Alder reactions of unactivated alkynes, Angew. Chem. Int. Ed. 46 (2007) 8845-8849; (f) H. Kusama, Y. Karibe, Y. Onizawa, N. Iwasawa, Gold-catalyzed tandem cyclization of dienol silyl ethers for the preparation of bicyclo[4.3.0]nonane derivatives, Angew. Chem. Int. Ed. 49 (2010) 4269-4272; (g) S.M. Kim, J.H. Park, Y.K. Chung, Au(PPh3)OPOF2-catalyzed intramolecular[4 + 2] cycloaddition reaction of dienynes, Chem. Commun. 47 (2011) 6719-6721.

    4. [4] (a) R. Aumann, Reactions of strained carbon-carbon bonds with transition metals. 7. Iron carbonyl complexes from vinylcyclopropane, J. Am. Chem. Soc. 96 (1974) 2631-2632; (b) D.F. Taber, K. Kanai, Q. Jiang, G. Bui, Enantiomerically pure cyclohexenones by Fe-mediated carbonylation of alkenyl cyclopropanes, J. Am. Chem. Soc. 122 (2000) 6807-6808; (c) D.F. Taber, P.V. Joshi, K. Kanai, 2,5-Dialkyl cyclohexenones by Fe(CO)5-mediated carbonylation of alkenyl cyclopropanes: functional group compatibility, J. Org. Chem. 69 (2004) 2268-2271; (d) T. Kurahashi, A. de Meijere, Cyclopropyl building blocks for organic synthesis, Part 120. [5 + 1] cocyclization of (cyclopropylmethylene)cyclopropanes and other vinyl-cyclopropanes with carbon monoxide catalyzed by octacarbonyldicobalt, Synlett (2005) 2619-2622.[4] (a) R. Aumann, Reactions of strained carbon-carbon bonds with transition metals. 7. Iron carbonyl complexes from vinylcyclopropane, J. Am. Chem. Soc. 96 (1974) 2631-2632; (b) D.F. Taber, K. Kanai, Q. Jiang, G. Bui, Enantiomerically pure cyclohexenones by Fe-mediated carbonylation of alkenyl cyclopropanes, J. Am. Chem. Soc. 122 (2000) 6807-6808; (c) D.F. Taber, P.V. Joshi, K. Kanai, 2,5-Dialkyl cyclohexenones by Fe(CO)5-mediated carbonylation of alkenyl cyclopropanes: functional group compatibility, J. Org. Chem. 69 (2004) 2268-2271; (d) T. Kurahashi, A. de Meijere, Cyclopropyl building blocks for organic synthesis, Part 120. [5 + 1] cocyclization of (cyclopropylmethylene)cyclopropanes and other vinyl-cyclopropanes with carbon monoxide catalyzed by octacarbonyldicobalt, Synlett (2005) 2619-2622.

    5. [5] (a) P.A. Wender, G.G. Gamber, R.D. Hubbard, S.M. Pham, L. Zhang, Multicomponent cycloadditions: the four-component [5 + 1 + 2 + 1] cycloaddition of vinylcyclopropanes, alkynes, and CO, J. Am. Chem. Soc. 127 (2005) 2836-2837; (b) Z.K. Yao, J. Li, Z.X. Yu, Rh-catalyzed [7 + 1] cycloaddition of buta-1,3-dienylcyclopropanes and CO for the synthesis of cyclooctadienones, Org. Lett. 13 (2011) 134-137; (c) M. Lin, F. Li, L. Jiao, Z.X. Yu, Rh(I)-catalyzed formal [5 + 1]/[2 + 2 + 1] cycloaddition of 1-yne-vinylcyclopropanes and two CO units: one-step construction of multifunctional angular tricyclic 5/5/6 compounds, J. Am. Chem. Soc. 133 (2011) 1690-1693.[5] (a) P.A. Wender, G.G. Gamber, R.D. Hubbard, S.M. Pham, L. Zhang, Multicomponent cycloadditions: the four-component [5 + 1 + 2 + 1] cycloaddition of vinylcyclopropanes, alkynes, and CO, J. Am. Chem. Soc. 127 (2005) 2836-2837; (b) Z.K. Yao, J. Li, Z.X. Yu, Rh-catalyzed [7 + 1] cycloaddition of buta-1,3-dienylcyclopropanes and CO for the synthesis of cyclooctadienones, Org. Lett. 13 (2011) 134-137; (c) M. Lin, F. Li, L. Jiao, Z.X. Yu, Rh(I)-catalyzed formal [5 + 1]/[2 + 2 + 1] cycloaddition of 1-yne-vinylcyclopropanes and two CO units: one-step construction of multifunctional angular tricyclic 5/5/6 compounds, J. Am. Chem. Soc. 133 (2011) 1690-1693.

    6. [6] (a) N. Iwasawa, Y. Owada, T. Matsuo, Octacarbonyldicobalt promoted transformation of 1-(1,2-propadienyl) cyclopropanols to 1,4-hydroquinones, Chem. Lett. (1995) 115-116; (b) Y. Owada, T. Matsuo, N. Iwasawa, Transformation of 1-(1,2-propadienyl) cyclopropanols into substituted hydroquinones employing octacarbonyldicobalt, Tetrahedron 53 (1997) 11069-11086; (c) M. Murakami, K. Itami, M. Ubukata, I. Tsuji, Y. Ito, Iridium-catalyzed [5 + 1] cycloaddition: allenylcyclopropane as a five-carbon assembling unit, J. Org. Chem. 63 (1998) 4-5; (d) D. Shu, X. Li, M. Zhang, P.J. Robichaux, W. Tang, Synthesis of highly functionalized cyclohexenone rings: rhodium-catalyzed 1,3-acyloxy migration and subsequent[5 + 1] cycloaddition, Angew. Chem. Int. Ed. 50 (2011) 1346-1349; (e) D. Shu, X. Li, M. Zhang, P.J. Robichaux, I.A. Guzei, W. Tang, Rhodium-catalyzed carbonylation of cyclopropyl substituted propargyl esters: a tandem 1,3-acyloxy migration [5 + 1] cycloaddition, J. Org. Chem. 77 (2012) 6463-6472.[6] (a) N. Iwasawa, Y. Owada, T. Matsuo, Octacarbonyldicobalt promoted transformation of 1-(1,2-propadienyl) cyclopropanols to 1,4-hydroquinones, Chem. Lett. (1995) 115-116; (b) Y. Owada, T. Matsuo, N. Iwasawa, Transformation of 1-(1,2-propadienyl) cyclopropanols into substituted hydroquinones employing octacarbonyldicobalt, Tetrahedron 53 (1997) 11069-11086; (c) M. Murakami, K. Itami, M. Ubukata, I. Tsuji, Y. Ito, Iridium-catalyzed [5 + 1] cycloaddition: allenylcyclopropane as a five-carbon assembling unit, J. Org. Chem. 63 (1998) 4-5; (d) D. Shu, X. Li, M. Zhang, P.J. Robichaux, W. Tang, Synthesis of highly functionalized cyclohexenone rings: rhodium-catalyzed 1,3-acyloxy migration and subsequent[5 + 1] cycloaddition, Angew. Chem. Int. Ed. 50 (2011) 1346-1349; (e) D. Shu, X. Li, M. Zhang, P.J. Robichaux, I.A. Guzei, W. Tang, Rhodium-catalyzed carbonylation of cyclopropyl substituted propargyl esters: a tandem 1,3-acyloxy migration [5 + 1] cycloaddition, J. Org. Chem. 77 (2012) 6463-6472.

    7. [7] (a) N.A. Grabowski, R.P. Hughes, B.S. Jaynes, A.L. Rheingold, Stepwise transition metal promoted ring expansion reactions of vinylcyclopropenes to give cyclopentadienes and cyclohexa-2,4-dienones. The first example of a 1-metallacyclohexa-2,4-diene complex, {[Pt-CH2-CH≡C(Ph)-C(Ph)≡C(Ph)](PPh3)2}, J. Chem. Soc. Chem. Commun. (1986) 1694-1695; (b) S.H. Cho, L.S. Liebeskind, Practical organic synthesis with strained ring molecules. Rhodium catalyzed carbonylation of cyclopropenecarboxylate esters and cyclopropenyl ketones to a-pyrones and/of vinyl cyclopropenes to phenols, J. Org. Chem. 52 (1987) 2631-2634; (c) M.F. Semmelhack, S. Ho, M. Steigerwald, M.C. Lee, Metal carbonyl-promoted rearrangement of cyclopropenes to naphthols, J. Am. Chem. Soc. 109 (1987) 4397-4399; (d) M.F. Semmelhack, S. Ho, D. Cohen, et al., Metal-catalyzed cyclopropene rearrangements for benzannulation: evaluation of an anthraquinone synthesis pathway and reevaluation of the parallel approach via carbene-chromium complexes, J. Am. Chem. Soc. 116 (1994) 7108-7122.[7] (a) N.A. Grabowski, R.P. Hughes, B.S. Jaynes, A.L. Rheingold, Stepwise transition metal promoted ring expansion reactions of vinylcyclopropenes to give cyclopentadienes and cyclohexa-2,4-dienones. The first example of a 1-metallacyclohexa-2,4-diene complex, {[Pt-CH2-CH≡C(Ph)-C(Ph)≡C(Ph)](PPh3)2}, J. Chem. Soc. Chem. Commun. (1986) 1694-1695; (b) S.H. Cho, L.S. Liebeskind, Practical organic synthesis with strained ring molecules. Rhodium catalyzed carbonylation of cyclopropenecarboxylate esters and cyclopropenyl ketones to a-pyrones and/of vinyl cyclopropenes to phenols, J. Org. Chem. 52 (1987) 2631-2634; (c) M.F. Semmelhack, S. Ho, M. Steigerwald, M.C. Lee, Metal carbonyl-promoted rearrangement of cyclopropenes to naphthols, J. Am. Chem. Soc. 109 (1987) 4397-4399; (d) M.F. Semmelhack, S. Ho, D. Cohen, et al., Metal-catalyzed cyclopropene rearrangements for benzannulation: evaluation of an anthraquinone synthesis pathway and reevaluation of the parallel approach via carbene-chromium complexes, J. Am. Chem. Soc. 116 (1994) 7108-7122.

    8. [8] (a) C. Brancour, T. Fukuyama, Y. Ohta, et al., Synthesis of functionalized resorcinols by rhodium-catalyzed [5 + 1] cycloaddition reaction of 3-acyloxy-1,4-enynes with CO, Chem. Commun. 46 (2010) 5470-5472; (b) T. Fukuyama, Y. Ohta, C. Brancour, et al., Rh-catalyzed [5 + 1] and [4 + 1] cycloaddition reactions of 1,4-enyne esters with CO: a shortcut to functionalized resorcinols and cyclopentenones, Chem. Eur. J. 18 (2012) 7243-7247.[8] (a) C. Brancour, T. Fukuyama, Y. Ohta, et al., Synthesis of functionalized resorcinols by rhodium-catalyzed [5 + 1] cycloaddition reaction of 3-acyloxy-1,4-enynes with CO, Chem. Commun. 46 (2010) 5470-5472; (b) T. Fukuyama, Y. Ohta, C. Brancour, et al., Rh-catalyzed [5 + 1] and [4 + 1] cycloaddition reactions of 1,4-enyne esters with CO: a shortcut to functionalized resorcinols and cyclopentenones, Chem. Eur. J. 18 (2012) 7243-7247.

    9. [9] A. Kamitani, N. Chatani, T. Morimoto, S. Murai, Carbonylative [5 + 1] cycloaddition of cyclopropyl imines catalyzed by ruthenium carbonyl complex, J. Org. Chem. 65 (2000) 9230-9233.[9] A. Kamitani, N. Chatani, T. Morimoto, S. Murai, Carbonylative [5 + 1] cycloaddition of cyclopropyl imines catalyzed by ruthenium carbonyl complex, J. Org. Chem. 65 (2000) 9230-9233.

    10. [10] (a) S. Kotha, E. Brahmachary, K. Lahiri, Transition metal catalyzed [2 + 2 + 2] cycloaddition and application in organic synthesis, Eur. J. Org. Chem. (2005) 4741-4767; (b) V. Gandon, C. Aubert, M. Malacria, Recent progress in cobalt-mediated[2 + 2 + 2] cycloaddition reactions, Chem. Commun. (2006) 2209-2217; (c) P.R. Chopade, J. Louie, [2 + 2 + 2] cycloaddition reactions catalyzed by transition metal complexes, Adv. Synth. Catal. 348 (2006) 2307-2327; (d) W. Wu, X.Y. Zhang, S.H. Kang, Rhodium-catalyzed selective [2 + 2 + 2] cyclizations of 1,6-diyneswithmonoynes leading to isoindolines and isobenzofurans, Chin. Chem. Lett. 21 (2010) 18-22.[10] (a) S. Kotha, E. Brahmachary, K. Lahiri, Transition metal catalyzed [2 + 2 + 2] cycloaddition and application in organic synthesis, Eur. J. Org. Chem. (2005) 4741-4767; (b) V. Gandon, C. Aubert, M. Malacria, Recent progress in cobalt-mediated[2 + 2 + 2] cycloaddition reactions, Chem. Commun. (2006) 2209-2217; (c) P.R. Chopade, J. Louie, [2 + 2 + 2] cycloaddition reactions catalyzed by transition metal complexes, Adv. Synth. Catal. 348 (2006) 2307-2327; (d) W. Wu, X.Y. Zhang, S.H. Kang, Rhodium-catalyzed selective [2 + 2 + 2] cyclizations of 1,6-diyneswithmonoynes leading to isoindolines and isobenzofurans, Chin. Chem. Lett. 21 (2010) 18-22.

    11. [11] (a) Y. Koga, K. Narasaka, Rhodium catalyzed transformation of 4-pentynyl cyclopropanes to bicyclo[4.3.0]nonenones via cleavage of cyclopropane ring, Chem.Lett. (1999) 705-706; (b) S.I. Lee, J.H. Park, Y.K. Chung, S.G. Lee, Rhodium-catalyzed carbonylative[3 + 2 + 1] cycloaddition reaction: catalytic formation of bicyclic cyclohexenones from trienes and carbon monoxide, J. Am. Chem. Soc. 126 (2004) 2714-2715; (c) L. Jiao, M. Lin, L.G. Zhuo, Z.X. Yu, Rh(I)-catalyzed [(3 + 2) + 1] cycloaddition of 1-yne/ene-vinylcyclopropanes and CO: homologous Pauson-Khand reaction and total synthesis of (±)-α-agarofuran, Org. Lett. 12 (2010) 2528-2531; (d) C. Li, H. Zhang, J. Feng, Y. Zhang, J. Wang, Rh(I)-catalyzed carbonylative carbocyclization of tethered ene-and yne-cyclopropenes, Org. Lett. 12 (2010) 3082-3085.[11] (a) Y. Koga, K. Narasaka, Rhodium catalyzed transformation of 4-pentynyl cyclopropanes to bicyclo[4.3.0]nonenones via cleavage of cyclopropane ring, Chem.Lett. (1999) 705-706; (b) S.I. Lee, J.H. Park, Y.K. Chung, S.G. Lee, Rhodium-catalyzed carbonylative[3 + 2 + 1] cycloaddition reaction: catalytic formation of bicyclic cyclohexenones from trienes and carbon monoxide, J. Am. Chem. Soc. 126 (2004) 2714-2715; (c) L. Jiao, M. Lin, L.G. Zhuo, Z.X. Yu, Rh(I)-catalyzed [(3 + 2) + 1] cycloaddition of 1-yne/ene-vinylcyclopropanes and CO: homologous Pauson-Khand reaction and total synthesis of (±)-α-agarofuran, Org. Lett. 12 (2010) 2528-2531; (d) C. Li, H. Zhang, J. Feng, Y. Zhang, J. Wang, Rh(I)-catalyzed carbonylative carbocyclization of tethered ene-and yne-cyclopropenes, Org. Lett. 12 (2010) 3082-3085.

    12. [12] D.F. Taber, P. Guo, N. Guo, Intramolecular [1 + 4 + 1] cycloaddition: establishment of the method, J. Am. Chem. Soc. 132 (2010) 11179-11182.[12] D.F. Taber, P. Guo, N. Guo, Intramolecular [1 + 4 + 1] cycloaddition: establishment of the method, J. Am. Chem. Soc. 132 (2010) 11179-11182.

    13. [13] A. Kozubek, J.H.P. Tyman, Resorcinolic lipids, the natural non-isoprenoid phenolic amphiphiles and their biological activity, Chem. Rev. 99 (1999) 1-26.[13] A. Kozubek, J.H.P. Tyman, Resorcinolic lipids, the natural non-isoprenoid phenolic amphiphiles and their biological activity, Chem. Rev. 99 (1999) 1-26.

    14. [14] M. Himejima, I. Kubo, Antibacterial agents from the cashew anacardium occidentale (anacardiaceae) nut shell oil, J. Agric. Food Chem. 39 (1991) 418-421.[14] M. Himejima, I. Kubo, Antibacterial agents from the cashew anacardium occidentale (anacardiaceae) nut shell oil, J. Agric. Food Chem. 39 (1991) 418-421.

    15. [15] X. Li, W. Song, W. Tang, Rhodium-catalyzed tandem annulation and (5 + 1) cycloaddition: 3-hydroxy-1,4-enyne as the 5-carbon component, J. Am. Chem. Soc. 135 (2013) 16797-16800.[15] X. Li, W. Song, W. Tang, Rhodium-catalyzed tandem annulation and (5 + 1) cycloaddition: 3-hydroxy-1,4-enyne as the 5-carbon component, J. Am. Chem. Soc. 135 (2013) 16797-16800.

    16. [16] C.M. Schienebeck, W. Song, A.M. Smits, W. Tang, Rhodium-catalyzed intermolecular[5 + 1] and [5 + 2] cycloadditions using 1,4-enynes with an electron-donating ester on the 3-position, Synthesis (2015), http://dx.doi.org/10.1055/s-0034-1380160.[16] C.M. Schienebeck, W. Song, A.M. Smits, W. Tang, Rhodium-catalyzed intermolecular[5 + 1] and [5 + 2] cycloadditions using 1,4-enynes with an electron-donating ester on the 3-position, Synthesis (2015), http://dx.doi.org/10.1055/s-0034-1380160.

    17. [17] X. Xu, P. Liu, X.Z. Shu, W. Tang, K.N. Houk, Rh-catalyzed (5 + 2) cycloadditions of 3-acyloxy-1,4-enynes and alkynes: computational study of mechanism, reactivity, and regioselectivity, J. Am. Chem. Soc. 135 (2013) 9271-9274.[17] X. Xu, P. Liu, X.Z. Shu, W. Tang, K.N. Houk, Rh-catalyzed (5 + 2) cycloadditions of 3-acyloxy-1,4-enynes and alkynes: computational study of mechanism, reactivity, and regioselectivity, J. Am. Chem. Soc. 135 (2013) 9271-9274.

    18. [18] M.J. Frisch, G.W. Trucks, H.B. Schlegel, et al., Gaussian 09, Revision B.01, Gaussian, Inc., Wallingford, CT, 2010.[18] M.J. Frisch, G.W. Trucks, H.B. Schlegel, et al., Gaussian 09, Revision B.01, Gaussian, Inc., Wallingford, CT, 2010.

    19. [19] C.Y. Legault, CYLview, 1.0b, Universitéde Sherbrooke, Sherbrooke, Québec, Canada, 2009, http://www.cylview.org.[19] C.Y. Legault, CYLview, 1.0b, Universitéde Sherbrooke, Sherbrooke, Québec, Canada, 2009, http://www.cylview.org.

    20. [20] M.R. Wilson, A. Prock, W.P. Giering, p Effects involving Rh-PZ3 compounds. The quantitative analysis of ligand effects (QALE), Organometallics 21 (2002) 2758-2763.[20] M.R. Wilson, A. Prock, W.P. Giering, p Effects involving Rh-PZ3 compounds. The quantitative analysis of ligand effects (QALE), Organometallics 21 (2002) 2758-2763.

    21. [21] Computational studies involving the active catalyst Rh(CO)Cl which derives from dissociation of the dimer [RhCl(CO)2]2: (a) ZX. Yu, P.A. Wender, K.N. Houk, On the mechanism of [Rh(CO)2Cl]2-catalyzed intermolecular (5 + 2) reactions between vinylcyclopropanes and alkynes, J. Am. Chem. Soc. 126 (2004) 9154-9155; (b) Z.X. Yu, P.H.Y. Cheong, P. Liu, et al., Origins of differences in reactivities of alkenes, alkynes, and allenes in [Rh(CO)2Cl]2-catalyzed (5 + 2) cycloaddition reactions with vinylcyclopropanes, J. Am. Chem. Soc. 130 (2008) 2378-2379; (c) P. Liu, P.H.Y. Cheong, Z.X. Yu, P.A. Wender, K.N. Houk, Substituent effects, reactant preorganization, and ligand exchange control the reactivity in Rh(I)-catalyzed (5 + 2) cycloadditions between vinylcyclopropanes and alkynes, Angew. Chem. Int. Ed. 47 (2008) 3939-3941; (d) X. Xu, P. Liu, A. Lesser, et al., Ligand effects on rates and regioselectivities of Rh(I)-catalyzed (5 + 2) cycloadditions: a computational study of cyclooctadiene and dinaphthocyclooctatetraene as ligands, J. Am. Chem. Soc. 134 (2012) 11012-11025.[21] Computational studies involving the active catalyst Rh(CO)Cl which derives from dissociation of the dimer [RhCl(CO)2]2: (a) ZX. Yu, P.A. Wender, K.N. Houk, On the mechanism of [Rh(CO)2Cl]2-catalyzed intermolecular (5 + 2) reactions between vinylcyclopropanes and alkynes, J. Am. Chem. Soc. 126 (2004) 9154-9155; (b) Z.X. Yu, P.H.Y. Cheong, P. Liu, et al., Origins of differences in reactivities of alkenes, alkynes, and allenes in [Rh(CO)2Cl]2-catalyzed (5 + 2) cycloaddition reactions with vinylcyclopropanes, J. Am. Chem. Soc. 130 (2008) 2378-2379; (c) P. Liu, P.H.Y. Cheong, Z.X. Yu, P.A. Wender, K.N. Houk, Substituent effects, reactant preorganization, and ligand exchange control the reactivity in Rh(I)-catalyzed (5 + 2) cycloadditions between vinylcyclopropanes and alkynes, Angew. Chem. Int. Ed. 47 (2008) 3939-3941; (d) X. Xu, P. Liu, A. Lesser, et al., Ligand effects on rates and regioselectivities of Rh(I)-catalyzed (5 + 2) cycloadditions: a computational study of cyclooctadiene and dinaphthocyclooctatetraene as ligands, J. Am. Chem. Soc. 134 (2012) 11012-11025.

    22. [22] C.M. Schienebeck, P.J. Robichaux, X. Li, L. Chen, W. Tang, Effect of ester on rhodium-catalyzed intermolecular [5 + 2] cycloaddition of 3-acyloxy-1,4-enynes and alkynes, Chem. Commun. 49 (2013) 2616-2618.[22] C.M. Schienebeck, P.J. Robichaux, X. Li, L. Chen, W. Tang, Effect of ester on rhodium-catalyzed intermolecular [5 + 2] cycloaddition of 3-acyloxy-1,4-enynes and alkynes, Chem. Commun. 49 (2013) 2616-2618.

  • 加载中
计量
  • PDF下载量:  0
  • 文章访问数:  1244
  • HTML全文浏览量:  29
文章相关
  • 发布日期:  2015-03-27
  • 收稿日期:  2014-12-15
  • 网络出版日期:  2015-01-22
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章