Mechanism and reactivity of rhodium-catalyzed intermolecular [5 + 1] cycloaddition of 3-acyloxy-1,4-enyne (ACE) and CO: A computational study
-
关键词:
- [5 + 1] cycloaddition
- / Rhodium catalyst
- / DFT
- / Ester effect
English
Mechanism and reactivity of rhodium-catalyzed intermolecular [5 + 1] cycloaddition of 3-acyloxy-1,4-enyne (ACE) and CO: A computational study
-
Key words:
- [5 + 1] cycloaddition
- / Rhodium catalyst
- / DFT
- / Ester effect
-
-
-
[1] For selected examples, see: (a) M Lautens, W. Klute, W. Tam, Transition metal-mediated cycloaddition reactions, Chem. Rev. 96 (1996) 49-92;(b) H.W. Fruhauf, Metal-assisted cycloaddition reactions in organotransition metal chemistry, Chem. Rev. 97 (1997) 523-596; (c) B.M. Trost, M.J. Krische, Transition metal catalyzed cycloisomerizations, Synlett (1998) 1-16; (d) C. Aubert, O. Buisine, M. Malacria, The behavior of 1,n-enynes in the presence of transition metals, Chem. Rev. 102 (2002) 813-834; (e) P.A. Evans, Modern Rhodium-Catalyzed Organic Reactions, Wiley-VCH, Weinheim, 2005; (f) V. Michelet, P.Y. Toullec, J.P. Genet, Cycloisomerization of 1,n-enynes: challenging metal-catalyzed rearrangements and mechanistic insights, Angew. Chem. Int. Ed. 47 (2008) 4268-4315; (g) Z.X. Yu, Y. Wang, Y. Wang, Transition-metal-catalyzed cycloadditions for the synthesis of eight-membered carbocycles, Chem. Asian J. 5 (2010) 1072-1088; (h) P.A. Inglesby, P.A. Evans, Stereoselective transition metal-catalysed higherorder carbocyclisation reactions, Chem. Soc. Rev. 39 (2010) 2791-2805; (i) Z. Chen, X. Han, J.H. Liang, et al., Cycloaddition reactions of benzyne with olefins, Chin. Chem. Lett. 25 (2014) 1535-1539; (j) H. Mehrabi, M. Hatami-Pour, Facile, one-pot synthesis of new phenanthridine derivatives through 1,4-dipolar cycloaddition of phenanthridine, activated acetylenes, and aromatic aldehydes, Chin. Chem. Lett. 25 (2014) 1495-1498.[1] For selected examples, see: (a) M Lautens, W. Klute, W. Tam, Transition metal-mediated cycloaddition reactions, Chem. Rev. 96 (1996) 49-92;(b) H.W. Fruhauf, Metal-assisted cycloaddition reactions in organotransition metal chemistry, Chem. Rev. 97 (1997) 523-596; (c) B.M. Trost, M.J. Krische, Transition metal catalyzed cycloisomerizations, Synlett (1998) 1-16; (d) C. Aubert, O. Buisine, M. Malacria, The behavior of 1,n-enynes in the presence of transition metals, Chem. Rev. 102 (2002) 813-834; (e) P.A. Evans, Modern Rhodium-Catalyzed Organic Reactions, Wiley-VCH, Weinheim, 2005; (f) V. Michelet, P.Y. Toullec, J.P. Genet, Cycloisomerization of 1,n-enynes: challenging metal-catalyzed rearrangements and mechanistic insights, Angew. Chem. Int. Ed. 47 (2008) 4268-4315; (g) Z.X. Yu, Y. Wang, Y. Wang, Transition-metal-catalyzed cycloadditions for the synthesis of eight-membered carbocycles, Chem. Asian J. 5 (2010) 1072-1088; (h) P.A. Inglesby, P.A. Evans, Stereoselective transition metal-catalysed higherorder carbocyclisation reactions, Chem. Soc. Rev. 39 (2010) 2791-2805; (i) Z. Chen, X. Han, J.H. Liang, et al., Cycloaddition reactions of benzyne with olefins, Chin. Chem. Lett. 25 (2014) 1535-1539; (j) H. Mehrabi, M. Hatami-Pour, Facile, one-pot synthesis of new phenanthridine derivatives through 1,4-dipolar cycloaddition of phenanthridine, activated acetylenes, and aromatic aldehydes, Chin. Chem. Lett. 25 (2014) 1495-1498.
-
[2] (a) Y. Huang, X. Lu, Palladium catalyzed annulation reaction using a bifunctional allylic alkylating agent, Tetrahedron Lett. 29 (1988) 5663-5664; (b) X.C. He, B. Wang, B.D. Bai, Studies on asymmetric synthesis of huperzine A-1. Palladium-catalyzed asymmetric bicycloannulation of 5,6,7,8-tetrahydro-2-methoxy-6-oxo-5-quinolinecarboxylic esters, Tetrahedron Lett. 39 (1998) 411-414.[2] (a) Y. Huang, X. Lu, Palladium catalyzed annulation reaction using a bifunctional allylic alkylating agent, Tetrahedron Lett. 29 (1988) 5663-5664; (b) X.C. He, B. Wang, B.D. Bai, Studies on asymmetric synthesis of huperzine A-1. Palladium-catalyzed asymmetric bicycloannulation of 5,6,7,8-tetrahydro-2-methoxy-6-oxo-5-quinolinecarboxylic esters, Tetrahedron Lett. 39 (1998) 411-414.
-
[3] (a) W. Carruthers, Cycloaddition Reactions in Organic Synthesis, Pergamon, Oxford, 1990; (b) P.A. Wender, T.E. Jenkins, S. Suzuki, Transition metal-catalyzed intramolecular[4 + 2] Diene-Allene cycloadditions: a convenient synthesis of angularly substituted ring systems with provision for catalyst-controlled chemo-and stereo-complementarity, J. Am. Chem. Soc. 117 (1995) 1843-1844; (c) D.J.R. O'Mahony, D.B. Belanger, T. Livinghouse, Substrate control of stereoselection in the rhodium(I) catalyzed intramolecular [4 + 2] cycloaddition reaction, Org. Biomol. Chem. 1 (2003) 2038-2040; (d) K. Aikawa, S. Akutagawa, K. Mikami, Asymmetric synergy between chiral dienes and diphosphines in cationic Rh(I)-catalyzed intramolecular [4 + 2] cycloaddition, J. Am. Chem. Soc. 128 (2006) 12648-12649; (e) A. Fürstner, C.C. Stimson, Two manifolds for metal-catalyzed intramolecular Diels-Alder reactions of unactivated alkynes, Angew. Chem. Int. Ed. 46 (2007) 8845-8849; (f) H. Kusama, Y. Karibe, Y. Onizawa, N. Iwasawa, Gold-catalyzed tandem cyclization of dienol silyl ethers for the preparation of bicyclo[4.3.0]nonane derivatives, Angew. Chem. Int. Ed. 49 (2010) 4269-4272; (g) S.M. Kim, J.H. Park, Y.K. Chung, Au(PPh3)OPOF2-catalyzed intramolecular[4 + 2] cycloaddition reaction of dienynes, Chem. Commun. 47 (2011) 6719-6721.[3] (a) W. Carruthers, Cycloaddition Reactions in Organic Synthesis, Pergamon, Oxford, 1990; (b) P.A. Wender, T.E. Jenkins, S. Suzuki, Transition metal-catalyzed intramolecular[4 + 2] Diene-Allene cycloadditions: a convenient synthesis of angularly substituted ring systems with provision for catalyst-controlled chemo-and stereo-complementarity, J. Am. Chem. Soc. 117 (1995) 1843-1844; (c) D.J.R. O'Mahony, D.B. Belanger, T. Livinghouse, Substrate control of stereoselection in the rhodium(I) catalyzed intramolecular [4 + 2] cycloaddition reaction, Org. Biomol. Chem. 1 (2003) 2038-2040; (d) K. Aikawa, S. Akutagawa, K. Mikami, Asymmetric synergy between chiral dienes and diphosphines in cationic Rh(I)-catalyzed intramolecular [4 + 2] cycloaddition, J. Am. Chem. Soc. 128 (2006) 12648-12649; (e) A. Fürstner, C.C. Stimson, Two manifolds for metal-catalyzed intramolecular Diels-Alder reactions of unactivated alkynes, Angew. Chem. Int. Ed. 46 (2007) 8845-8849; (f) H. Kusama, Y. Karibe, Y. Onizawa, N. Iwasawa, Gold-catalyzed tandem cyclization of dienol silyl ethers for the preparation of bicyclo[4.3.0]nonane derivatives, Angew. Chem. Int. Ed. 49 (2010) 4269-4272; (g) S.M. Kim, J.H. Park, Y.K. Chung, Au(PPh3)OPOF2-catalyzed intramolecular[4 + 2] cycloaddition reaction of dienynes, Chem. Commun. 47 (2011) 6719-6721.
-
[4] (a) R. Aumann, Reactions of strained carbon-carbon bonds with transition metals. 7. Iron carbonyl complexes from vinylcyclopropane, J. Am. Chem. Soc. 96 (1974) 2631-2632; (b) D.F. Taber, K. Kanai, Q. Jiang, G. Bui, Enantiomerically pure cyclohexenones by Fe-mediated carbonylation of alkenyl cyclopropanes, J. Am. Chem. Soc. 122 (2000) 6807-6808; (c) D.F. Taber, P.V. Joshi, K. Kanai, 2,5-Dialkyl cyclohexenones by Fe(CO)5-mediated carbonylation of alkenyl cyclopropanes: functional group compatibility, J. Org. Chem. 69 (2004) 2268-2271; (d) T. Kurahashi, A. de Meijere, Cyclopropyl building blocks for organic synthesis, Part 120. [5 + 1] cocyclization of (cyclopropylmethylene)cyclopropanes and other vinyl-cyclopropanes with carbon monoxide catalyzed by octacarbonyldicobalt, Synlett (2005) 2619-2622.[4] (a) R. Aumann, Reactions of strained carbon-carbon bonds with transition metals. 7. Iron carbonyl complexes from vinylcyclopropane, J. Am. Chem. Soc. 96 (1974) 2631-2632; (b) D.F. Taber, K. Kanai, Q. Jiang, G. Bui, Enantiomerically pure cyclohexenones by Fe-mediated carbonylation of alkenyl cyclopropanes, J. Am. Chem. Soc. 122 (2000) 6807-6808; (c) D.F. Taber, P.V. Joshi, K. Kanai, 2,5-Dialkyl cyclohexenones by Fe(CO)5-mediated carbonylation of alkenyl cyclopropanes: functional group compatibility, J. Org. Chem. 69 (2004) 2268-2271; (d) T. Kurahashi, A. de Meijere, Cyclopropyl building blocks for organic synthesis, Part 120. [5 + 1] cocyclization of (cyclopropylmethylene)cyclopropanes and other vinyl-cyclopropanes with carbon monoxide catalyzed by octacarbonyldicobalt, Synlett (2005) 2619-2622.
-
[5] (a) P.A. Wender, G.G. Gamber, R.D. Hubbard, S.M. Pham, L. Zhang, Multicomponent cycloadditions: the four-component [5 + 1 + 2 + 1] cycloaddition of vinylcyclopropanes, alkynes, and CO, J. Am. Chem. Soc. 127 (2005) 2836-2837; (b) Z.K. Yao, J. Li, Z.X. Yu, Rh-catalyzed [7 + 1] cycloaddition of buta-1,3-dienylcyclopropanes and CO for the synthesis of cyclooctadienones, Org. Lett. 13 (2011) 134-137; (c) M. Lin, F. Li, L. Jiao, Z.X. Yu, Rh(I)-catalyzed formal [5 + 1]/[2 + 2 + 1] cycloaddition of 1-yne-vinylcyclopropanes and two CO units: one-step construction of multifunctional angular tricyclic 5/5/6 compounds, J. Am. Chem. Soc. 133 (2011) 1690-1693.[5] (a) P.A. Wender, G.G. Gamber, R.D. Hubbard, S.M. Pham, L. Zhang, Multicomponent cycloadditions: the four-component [5 + 1 + 2 + 1] cycloaddition of vinylcyclopropanes, alkynes, and CO, J. Am. Chem. Soc. 127 (2005) 2836-2837; (b) Z.K. Yao, J. Li, Z.X. Yu, Rh-catalyzed [7 + 1] cycloaddition of buta-1,3-dienylcyclopropanes and CO for the synthesis of cyclooctadienones, Org. Lett. 13 (2011) 134-137; (c) M. Lin, F. Li, L. Jiao, Z.X. Yu, Rh(I)-catalyzed formal [5 + 1]/[2 + 2 + 1] cycloaddition of 1-yne-vinylcyclopropanes and two CO units: one-step construction of multifunctional angular tricyclic 5/5/6 compounds, J. Am. Chem. Soc. 133 (2011) 1690-1693.
-
[6] (a) N. Iwasawa, Y. Owada, T. Matsuo, Octacarbonyldicobalt promoted transformation of 1-(1,2-propadienyl) cyclopropanols to 1,4-hydroquinones, Chem. Lett. (1995) 115-116; (b) Y. Owada, T. Matsuo, N. Iwasawa, Transformation of 1-(1,2-propadienyl) cyclopropanols into substituted hydroquinones employing octacarbonyldicobalt, Tetrahedron 53 (1997) 11069-11086; (c) M. Murakami, K. Itami, M. Ubukata, I. Tsuji, Y. Ito, Iridium-catalyzed [5 + 1] cycloaddition: allenylcyclopropane as a five-carbon assembling unit, J. Org. Chem. 63 (1998) 4-5; (d) D. Shu, X. Li, M. Zhang, P.J. Robichaux, W. Tang, Synthesis of highly functionalized cyclohexenone rings: rhodium-catalyzed 1,3-acyloxy migration and subsequent[5 + 1] cycloaddition, Angew. Chem. Int. Ed. 50 (2011) 1346-1349; (e) D. Shu, X. Li, M. Zhang, P.J. Robichaux, I.A. Guzei, W. Tang, Rhodium-catalyzed carbonylation of cyclopropyl substituted propargyl esters: a tandem 1,3-acyloxy migration [5 + 1] cycloaddition, J. Org. Chem. 77 (2012) 6463-6472.[6] (a) N. Iwasawa, Y. Owada, T. Matsuo, Octacarbonyldicobalt promoted transformation of 1-(1,2-propadienyl) cyclopropanols to 1,4-hydroquinones, Chem. Lett. (1995) 115-116; (b) Y. Owada, T. Matsuo, N. Iwasawa, Transformation of 1-(1,2-propadienyl) cyclopropanols into substituted hydroquinones employing octacarbonyldicobalt, Tetrahedron 53 (1997) 11069-11086; (c) M. Murakami, K. Itami, M. Ubukata, I. Tsuji, Y. Ito, Iridium-catalyzed [5 + 1] cycloaddition: allenylcyclopropane as a five-carbon assembling unit, J. Org. Chem. 63 (1998) 4-5; (d) D. Shu, X. Li, M. Zhang, P.J. Robichaux, W. Tang, Synthesis of highly functionalized cyclohexenone rings: rhodium-catalyzed 1,3-acyloxy migration and subsequent[5 + 1] cycloaddition, Angew. Chem. Int. Ed. 50 (2011) 1346-1349; (e) D. Shu, X. Li, M. Zhang, P.J. Robichaux, I.A. Guzei, W. Tang, Rhodium-catalyzed carbonylation of cyclopropyl substituted propargyl esters: a tandem 1,3-acyloxy migration [5 + 1] cycloaddition, J. Org. Chem. 77 (2012) 6463-6472.
-
[7] (a) N.A. Grabowski, R.P. Hughes, B.S. Jaynes, A.L. Rheingold, Stepwise transition metal promoted ring expansion reactions of vinylcyclopropenes to give cyclopentadienes and cyclohexa-2,4-dienones. The first example of a 1-metallacyclohexa-2,4-diene complex, {[Pt-CH2-CH≡C(Ph)-C(Ph)≡C(Ph)](PPh3)2}, J. Chem. Soc. Chem. Commun. (1986) 1694-1695; (b) S.H. Cho, L.S. Liebeskind, Practical organic synthesis with strained ring molecules. Rhodium catalyzed carbonylation of cyclopropenecarboxylate esters and cyclopropenyl ketones to a-pyrones and/of vinyl cyclopropenes to phenols, J. Org. Chem. 52 (1987) 2631-2634; (c) M.F. Semmelhack, S. Ho, M. Steigerwald, M.C. Lee, Metal carbonyl-promoted rearrangement of cyclopropenes to naphthols, J. Am. Chem. Soc. 109 (1987) 4397-4399; (d) M.F. Semmelhack, S. Ho, D. Cohen, et al., Metal-catalyzed cyclopropene rearrangements for benzannulation: evaluation of an anthraquinone synthesis pathway and reevaluation of the parallel approach via carbene-chromium complexes, J. Am. Chem. Soc. 116 (1994) 7108-7122.[7] (a) N.A. Grabowski, R.P. Hughes, B.S. Jaynes, A.L. Rheingold, Stepwise transition metal promoted ring expansion reactions of vinylcyclopropenes to give cyclopentadienes and cyclohexa-2,4-dienones. The first example of a 1-metallacyclohexa-2,4-diene complex, {[Pt-CH2-CH≡C(Ph)-C(Ph)≡C(Ph)](PPh3)2}, J. Chem. Soc. Chem. Commun. (1986) 1694-1695; (b) S.H. Cho, L.S. Liebeskind, Practical organic synthesis with strained ring molecules. Rhodium catalyzed carbonylation of cyclopropenecarboxylate esters and cyclopropenyl ketones to a-pyrones and/of vinyl cyclopropenes to phenols, J. Org. Chem. 52 (1987) 2631-2634; (c) M.F. Semmelhack, S. Ho, M. Steigerwald, M.C. Lee, Metal carbonyl-promoted rearrangement of cyclopropenes to naphthols, J. Am. Chem. Soc. 109 (1987) 4397-4399; (d) M.F. Semmelhack, S. Ho, D. Cohen, et al., Metal-catalyzed cyclopropene rearrangements for benzannulation: evaluation of an anthraquinone synthesis pathway and reevaluation of the parallel approach via carbene-chromium complexes, J. Am. Chem. Soc. 116 (1994) 7108-7122.
-
[8] (a) C. Brancour, T. Fukuyama, Y. Ohta, et al., Synthesis of functionalized resorcinols by rhodium-catalyzed [5 + 1] cycloaddition reaction of 3-acyloxy-1,4-enynes with CO, Chem. Commun. 46 (2010) 5470-5472; (b) T. Fukuyama, Y. Ohta, C. Brancour, et al., Rh-catalyzed [5 + 1] and [4 + 1] cycloaddition reactions of 1,4-enyne esters with CO: a shortcut to functionalized resorcinols and cyclopentenones, Chem. Eur. J. 18 (2012) 7243-7247.[8] (a) C. Brancour, T. Fukuyama, Y. Ohta, et al., Synthesis of functionalized resorcinols by rhodium-catalyzed [5 + 1] cycloaddition reaction of 3-acyloxy-1,4-enynes with CO, Chem. Commun. 46 (2010) 5470-5472; (b) T. Fukuyama, Y. Ohta, C. Brancour, et al., Rh-catalyzed [5 + 1] and [4 + 1] cycloaddition reactions of 1,4-enyne esters with CO: a shortcut to functionalized resorcinols and cyclopentenones, Chem. Eur. J. 18 (2012) 7243-7247.
-
[9] A. Kamitani, N. Chatani, T. Morimoto, S. Murai, Carbonylative [5 + 1] cycloaddition of cyclopropyl imines catalyzed by ruthenium carbonyl complex, J. Org. Chem. 65 (2000) 9230-9233.[9] A. Kamitani, N. Chatani, T. Morimoto, S. Murai, Carbonylative [5 + 1] cycloaddition of cyclopropyl imines catalyzed by ruthenium carbonyl complex, J. Org. Chem. 65 (2000) 9230-9233.
-
[10] (a) S. Kotha, E. Brahmachary, K. Lahiri, Transition metal catalyzed [2 + 2 + 2] cycloaddition and application in organic synthesis, Eur. J. Org. Chem. (2005) 4741-4767; (b) V. Gandon, C. Aubert, M. Malacria, Recent progress in cobalt-mediated[2 + 2 + 2] cycloaddition reactions, Chem. Commun. (2006) 2209-2217; (c) P.R. Chopade, J. Louie, [2 + 2 + 2] cycloaddition reactions catalyzed by transition metal complexes, Adv. Synth. Catal. 348 (2006) 2307-2327; (d) W. Wu, X.Y. Zhang, S.H. Kang, Rhodium-catalyzed selective [2 + 2 + 2] cyclizations of 1,6-diyneswithmonoynes leading to isoindolines and isobenzofurans, Chin. Chem. Lett. 21 (2010) 18-22.[10] (a) S. Kotha, E. Brahmachary, K. Lahiri, Transition metal catalyzed [2 + 2 + 2] cycloaddition and application in organic synthesis, Eur. J. Org. Chem. (2005) 4741-4767; (b) V. Gandon, C. Aubert, M. Malacria, Recent progress in cobalt-mediated[2 + 2 + 2] cycloaddition reactions, Chem. Commun. (2006) 2209-2217; (c) P.R. Chopade, J. Louie, [2 + 2 + 2] cycloaddition reactions catalyzed by transition metal complexes, Adv. Synth. Catal. 348 (2006) 2307-2327; (d) W. Wu, X.Y. Zhang, S.H. Kang, Rhodium-catalyzed selective [2 + 2 + 2] cyclizations of 1,6-diyneswithmonoynes leading to isoindolines and isobenzofurans, Chin. Chem. Lett. 21 (2010) 18-22.
-
[11] (a) Y. Koga, K. Narasaka, Rhodium catalyzed transformation of 4-pentynyl cyclopropanes to bicyclo[4.3.0]nonenones via cleavage of cyclopropane ring, Chem.Lett. (1999) 705-706; (b) S.I. Lee, J.H. Park, Y.K. Chung, S.G. Lee, Rhodium-catalyzed carbonylative[3 + 2 + 1] cycloaddition reaction: catalytic formation of bicyclic cyclohexenones from trienes and carbon monoxide, J. Am. Chem. Soc. 126 (2004) 2714-2715; (c) L. Jiao, M. Lin, L.G. Zhuo, Z.X. Yu, Rh(I)-catalyzed [(3 + 2) + 1] cycloaddition of 1-yne/ene-vinylcyclopropanes and CO: homologous Pauson-Khand reaction and total synthesis of (±)-α-agarofuran, Org. Lett. 12 (2010) 2528-2531; (d) C. Li, H. Zhang, J. Feng, Y. Zhang, J. Wang, Rh(I)-catalyzed carbonylative carbocyclization of tethered ene-and yne-cyclopropenes, Org. Lett. 12 (2010) 3082-3085.[11] (a) Y. Koga, K. Narasaka, Rhodium catalyzed transformation of 4-pentynyl cyclopropanes to bicyclo[4.3.0]nonenones via cleavage of cyclopropane ring, Chem.Lett. (1999) 705-706; (b) S.I. Lee, J.H. Park, Y.K. Chung, S.G. Lee, Rhodium-catalyzed carbonylative[3 + 2 + 1] cycloaddition reaction: catalytic formation of bicyclic cyclohexenones from trienes and carbon monoxide, J. Am. Chem. Soc. 126 (2004) 2714-2715; (c) L. Jiao, M. Lin, L.G. Zhuo, Z.X. Yu, Rh(I)-catalyzed [(3 + 2) + 1] cycloaddition of 1-yne/ene-vinylcyclopropanes and CO: homologous Pauson-Khand reaction and total synthesis of (±)-α-agarofuran, Org. Lett. 12 (2010) 2528-2531; (d) C. Li, H. Zhang, J. Feng, Y. Zhang, J. Wang, Rh(I)-catalyzed carbonylative carbocyclization of tethered ene-and yne-cyclopropenes, Org. Lett. 12 (2010) 3082-3085.
-
[12] D.F. Taber, P. Guo, N. Guo, Intramolecular [1 + 4 + 1] cycloaddition: establishment of the method, J. Am. Chem. Soc. 132 (2010) 11179-11182.[12] D.F. Taber, P. Guo, N. Guo, Intramolecular [1 + 4 + 1] cycloaddition: establishment of the method, J. Am. Chem. Soc. 132 (2010) 11179-11182.
-
[13] A. Kozubek, J.H.P. Tyman, Resorcinolic lipids, the natural non-isoprenoid phenolic amphiphiles and their biological activity, Chem. Rev. 99 (1999) 1-26.[13] A. Kozubek, J.H.P. Tyman, Resorcinolic lipids, the natural non-isoprenoid phenolic amphiphiles and their biological activity, Chem. Rev. 99 (1999) 1-26.
-
[14] M. Himejima, I. Kubo, Antibacterial agents from the cashew anacardium occidentale (anacardiaceae) nut shell oil, J. Agric. Food Chem. 39 (1991) 418-421.[14] M. Himejima, I. Kubo, Antibacterial agents from the cashew anacardium occidentale (anacardiaceae) nut shell oil, J. Agric. Food Chem. 39 (1991) 418-421.
-
[15] X. Li, W. Song, W. Tang, Rhodium-catalyzed tandem annulation and (5 + 1) cycloaddition: 3-hydroxy-1,4-enyne as the 5-carbon component, J. Am. Chem. Soc. 135 (2013) 16797-16800.[15] X. Li, W. Song, W. Tang, Rhodium-catalyzed tandem annulation and (5 + 1) cycloaddition: 3-hydroxy-1,4-enyne as the 5-carbon component, J. Am. Chem. Soc. 135 (2013) 16797-16800.
-
[16] C.M. Schienebeck, W. Song, A.M. Smits, W. Tang, Rhodium-catalyzed intermolecular[5 + 1] and [5 + 2] cycloadditions using 1,4-enynes with an electron-donating ester on the 3-position, Synthesis (2015), http://dx.doi.org/10.1055/s-0034-1380160.[16] C.M. Schienebeck, W. Song, A.M. Smits, W. Tang, Rhodium-catalyzed intermolecular[5 + 1] and [5 + 2] cycloadditions using 1,4-enynes with an electron-donating ester on the 3-position, Synthesis (2015), http://dx.doi.org/10.1055/s-0034-1380160.
-
[17] X. Xu, P. Liu, X.Z. Shu, W. Tang, K.N. Houk, Rh-catalyzed (5 + 2) cycloadditions of 3-acyloxy-1,4-enynes and alkynes: computational study of mechanism, reactivity, and regioselectivity, J. Am. Chem. Soc. 135 (2013) 9271-9274.[17] X. Xu, P. Liu, X.Z. Shu, W. Tang, K.N. Houk, Rh-catalyzed (5 + 2) cycloadditions of 3-acyloxy-1,4-enynes and alkynes: computational study of mechanism, reactivity, and regioselectivity, J. Am. Chem. Soc. 135 (2013) 9271-9274.
-
[18] M.J. Frisch, G.W. Trucks, H.B. Schlegel, et al., Gaussian 09, Revision B.01, Gaussian, Inc., Wallingford, CT, 2010.[18] M.J. Frisch, G.W. Trucks, H.B. Schlegel, et al., Gaussian 09, Revision B.01, Gaussian, Inc., Wallingford, CT, 2010.
-
[19] C.Y. Legault, CYLview, 1.0b, Universitéde Sherbrooke, Sherbrooke, Québec, Canada, 2009, http://www.cylview.org.[19] C.Y. Legault, CYLview, 1.0b, Universitéde Sherbrooke, Sherbrooke, Québec, Canada, 2009, http://www.cylview.org.
-
[20] M.R. Wilson, A. Prock, W.P. Giering, p Effects involving Rh-PZ3 compounds. The quantitative analysis of ligand effects (QALE), Organometallics 21 (2002) 2758-2763.[20] M.R. Wilson, A. Prock, W.P. Giering, p Effects involving Rh-PZ3 compounds. The quantitative analysis of ligand effects (QALE), Organometallics 21 (2002) 2758-2763.
-
[21] Computational studies involving the active catalyst Rh(CO)Cl which derives from dissociation of the dimer [RhCl(CO)2]2: (a) ZX. Yu, P.A. Wender, K.N. Houk, On the mechanism of [Rh(CO)2Cl]2-catalyzed intermolecular (5 + 2) reactions between vinylcyclopropanes and alkynes, J. Am. Chem. Soc. 126 (2004) 9154-9155; (b) Z.X. Yu, P.H.Y. Cheong, P. Liu, et al., Origins of differences in reactivities of alkenes, alkynes, and allenes in [Rh(CO)2Cl]2-catalyzed (5 + 2) cycloaddition reactions with vinylcyclopropanes, J. Am. Chem. Soc. 130 (2008) 2378-2379; (c) P. Liu, P.H.Y. Cheong, Z.X. Yu, P.A. Wender, K.N. Houk, Substituent effects, reactant preorganization, and ligand exchange control the reactivity in Rh(I)-catalyzed (5 + 2) cycloadditions between vinylcyclopropanes and alkynes, Angew. Chem. Int. Ed. 47 (2008) 3939-3941; (d) X. Xu, P. Liu, A. Lesser, et al., Ligand effects on rates and regioselectivities of Rh(I)-catalyzed (5 + 2) cycloadditions: a computational study of cyclooctadiene and dinaphthocyclooctatetraene as ligands, J. Am. Chem. Soc. 134 (2012) 11012-11025.[21] Computational studies involving the active catalyst Rh(CO)Cl which derives from dissociation of the dimer [RhCl(CO)2]2: (a) ZX. Yu, P.A. Wender, K.N. Houk, On the mechanism of [Rh(CO)2Cl]2-catalyzed intermolecular (5 + 2) reactions between vinylcyclopropanes and alkynes, J. Am. Chem. Soc. 126 (2004) 9154-9155; (b) Z.X. Yu, P.H.Y. Cheong, P. Liu, et al., Origins of differences in reactivities of alkenes, alkynes, and allenes in [Rh(CO)2Cl]2-catalyzed (5 + 2) cycloaddition reactions with vinylcyclopropanes, J. Am. Chem. Soc. 130 (2008) 2378-2379; (c) P. Liu, P.H.Y. Cheong, Z.X. Yu, P.A. Wender, K.N. Houk, Substituent effects, reactant preorganization, and ligand exchange control the reactivity in Rh(I)-catalyzed (5 + 2) cycloadditions between vinylcyclopropanes and alkynes, Angew. Chem. Int. Ed. 47 (2008) 3939-3941; (d) X. Xu, P. Liu, A. Lesser, et al., Ligand effects on rates and regioselectivities of Rh(I)-catalyzed (5 + 2) cycloadditions: a computational study of cyclooctadiene and dinaphthocyclooctatetraene as ligands, J. Am. Chem. Soc. 134 (2012) 11012-11025.
-
[22] C.M. Schienebeck, P.J. Robichaux, X. Li, L. Chen, W. Tang, Effect of ester on rhodium-catalyzed intermolecular [5 + 2] cycloaddition of 3-acyloxy-1,4-enynes and alkynes, Chem. Commun. 49 (2013) 2616-2618.[22] C.M. Schienebeck, P.J. Robichaux, X. Li, L. Chen, W. Tang, Effect of ester on rhodium-catalyzed intermolecular [5 + 2] cycloaddition of 3-acyloxy-1,4-enynes and alkynes, Chem. Commun. 49 (2013) 2616-2618.
-
-
扫一扫看文章
计量
- PDF下载量: 0
- 文章访问数: 1244
- HTML全文浏览量: 29

下载: