Formation of six-coordinated silicon in calcium phosphosilicate xerogels assisted by polyols at low temperature and pressure
-
关键词:
- Phosphosilicate
- / Six-coordinated silicon
- / Polyols
- / MAS-NMR
English
Formation of six-coordinated silicon in calcium phosphosilicate xerogels assisted by polyols at low temperature and pressure
-
Key words:
- Phosphosilicate
- / Six-coordinated silicon
- / Polyols
- / MAS-NMR
-
-
-
[1] M. Nogami, K. Miyamura, Y. Abe, Fast protonic conductors of water-containing P2O5–ZrO2–SiO2 glasses, J. Electrochem. Soc. 144 (1997) 2175–2178.[1] M. Nogami, K. Miyamura, Y. Abe, Fast protonic conductors of water-containing P2O5–ZrO2–SiO2 glasses, J. Electrochem. Soc. 144 (1997) 2175–2178.
-
[2] N.J. Clayden, S. Esposito, P. Pernice, A. Aronne, Solid state 1H NMR study, humidity sensitivity and protonic conduction of gel derived phosphosilicate glasses, J. Mater. Chem. 12 (2002) 3746–3753.[2] N.J. Clayden, S. Esposito, P. Pernice, A. Aronne, Solid state 1H NMR study, humidity sensitivity and protonic conduction of gel derived phosphosilicate glasses, J. Mater. Chem. 12 (2002) 3746–3753.
-
[3] E.A. Abou Neel, D.M. Pickup, S.P. Valappil, R.J. Newport, J.C. Knowles, Bioactive functional materials: a perspective on phosphate-based glasses, J. Mater. Chem. 19 (2009) 690–701.[3] E.A. Abou Neel, D.M. Pickup, S.P. Valappil, R.J. Newport, J.C. Knowles, Bioactive functional materials: a perspective on phosphate-based glasses, J. Mater. Chem. 19 (2009) 690–701.
-
[4] L.L. Hench, Bioceramics: from concept to clinic, J. Am. Ceram. Soc. 74 (1991) 1487– 1510.[4] L.L. Hench, Bioceramics: from concept to clinic, J. Am. Ceram. Soc. 74 (1991) 1487– 1510.
-
[5] J. Ide, K. Ozutsumi, H. Kageyama, XAFS study of six-coordinated silicon in R2O–SiO2–P2O5 (R = Li, Na, K) glasses, J. Non-Cryst. Solids 353 (2007) 1966–1969.[5] J. Ide, K. Ozutsumi, H. Kageyama, XAFS study of six-coordinated silicon in R2O–SiO2–P2O5 (R = Li, Na, K) glasses, J. Non-Cryst. Solids 353 (2007) 1966–1969.
-
[6] P. Melnikov, S.B. Santagnelli, F.J. dos Santos, et al., Phosphate functionalization of spongiolite surface, Mater. Chem. Phys. 82 (2003) 980–983.[6] P. Melnikov, S.B. Santagnelli, F.J. dos Santos, et al., Phosphate functionalization of spongiolite surface, Mater. Chem. Phys. 82 (2003) 980–983.
-
[7] R. Dupree, D. Holland, M.G. Mortuza, J.A. Collins, M.W.G. Lockyer, Magic angle spinning NMR of alkali phosphor-alumino-silicate glasses, J. Non-Cryst. Solids 112 (1989) 111–119.[7] R. Dupree, D. Holland, M.G. Mortuza, J.A. Collins, M.W.G. Lockyer, Magic angle spinning NMR of alkali phosphor-alumino-silicate glasses, J. Non-Cryst. Solids 112 (1989) 111–119.
-
[8] N.J. Clayden, S. Esposito, P. Pernice, A.J. Aronne, Solid state 29Si and 31P NMR study of gel derived phosphosilicate glasses, J. Mater. Chem. 11 (2001) 936–943.[8] N.J. Clayden, S. Esposito, P. Pernice, A.J. Aronne, Solid state 29Si and 31P NMR study of gel derived phosphosilicate glasses, J. Mater. Chem. 11 (2001) 936–943.
-
[9] I. EI-Sayed, Y. Hatanaka, S. Onozawa, M.J. Tanaka, Unusual locking of silicon chains in to all-transoid conformation by pentacoordinate silicon atoms, Am. Chem. Soc. 123 (2001) 3597–3598.[9] I. EI-Sayed, Y. Hatanaka, S. Onozawa, M.J. Tanaka, Unusual locking of silicon chains in to all-transoid conformation by pentacoordinate silicon atoms, Am. Chem. Soc. 123 (2001) 3597–3598.
-
[10] I. El-Sayed, Y. Hatanaka, C. Muguruma, et al., Synthesis, X-ray structure, and electronic properties of oligosilanes containing pentacoordinate silicon moieties at internal positions, J. Am. Chem. Soc. 121 (1999) 5095–5096.[10] I. El-Sayed, Y. Hatanaka, C. Muguruma, et al., Synthesis, X-ray structure, and electronic properties of oligosilanes containing pentacoordinate silicon moieties at internal positions, J. Am. Chem. Soc. 121 (1999) 5095–5096.
-
[11] C. Muguruma, N. Koga, Y. Hatanaka, et al., Theoretical study of ultraviolet absorption spectra of tetra- and pentacoordinate silicon compounds, J. Phys. Chem. A 104 (2000) 4928–4935.[11] C. Muguruma, N. Koga, Y. Hatanaka, et al., Theoretical study of ultraviolet absorption spectra of tetra- and pentacoordinate silicon compounds, J. Phys. Chem. A 104 (2000) 4928–4935.
-
[12] I. Kalikhman, O. Girshberg, L. Lameyer, D. Stalke, D. Kost, Tautomeric equilibrium between penta- and hexacoordinate silicon chelates. A chloride bridge between two pentacoordinate silicons, J. Am. Chem. Soc. 123 (2001) 4709–4716.[12] I. Kalikhman, O. Girshberg, L. Lameyer, D. Stalke, D. Kost, Tautomeric equilibrium between penta- and hexacoordinate silicon chelates. A chloride bridge between two pentacoordinate silicons, J. Am. Chem. Soc. 123 (2001) 4709–4716.
-
[13] M. Nakash, M. Goldvaser, Formation of hypervalent complexes of PhCCSiF3 with pyridine through intermolecular silicon nitrogen interaction, J. Am. Chem. Soc. 126 (2004) 3436–3437.[13] M. Nakash, M. Goldvaser, Formation of hypervalent complexes of PhCCSiF3 with pyridine through intermolecular silicon nitrogen interaction, J. Am. Chem. Soc. 126 (2004) 3436–3437.
-
[14] I. Kalikhman, B. Gostevskii, O. Girshberg, S. Krivonos, D. Kost, Donor-stabilized silyl cations 4: N-isopropylidene hydrazides, novel bidentate ligands for pentaand hexacoordinate silicon chelates, Organometallics 21 (2002) 2551–2554.[14] I. Kalikhman, B. Gostevskii, O. Girshberg, S. Krivonos, D. Kost, Donor-stabilized silyl cations 4: N-isopropylidene hydrazides, novel bidentate ligands for pentaand hexacoordinate silicon chelates, Organometallics 21 (2002) 2551–2554.
-
[15] N. Kano, F. Komatsu, M. Yamamura, T. Kawashima, Reversible photoswitching of the coordination numbers of silicon in organosilicon compounds bearing a 2-(phenylazo) phenyl group, J. Am. Chem. Soc. 128 (2006) 7097–7109.[15] N. Kano, F. Komatsu, M. Yamamura, T. Kawashima, Reversible photoswitching of the coordination numbers of silicon in organosilicon compounds bearing a 2-(phenylazo) phenyl group, J. Am. Chem. Soc. 128 (2006) 7097–7109.
-
[16] J.B. Lambert, S.R. Singer, Self-assembled macrocycles with pentavalent silicon linkages, J. Organomet. Chem. 689 (2004) 2293–2302.[16] J.B. Lambert, S.R. Singer, Self-assembled macrocycles with pentavalent silicon linkages, J. Organomet. Chem. 689 (2004) 2293–2302.
-
[17] G. Serghiou, R. Boehler, A. Chopelas, Reversible coordination changes in crystalline silicates at high pressure and ambient temperature, J. Phys. Condens. Matter 12 (2000) 849–857.[17] G. Serghiou, R. Boehler, A. Chopelas, Reversible coordination changes in crystalline silicates at high pressure and ambient temperature, J. Phys. Condens. Matter 12 (2000) 849–857.
-
[18] M. Nogami, K. Miyamura, Y. Kawasaki, Y. Abe, Six-coordinated silicon in SrO– P2O5–SiO2 glasses, J. Non-Cryst. Solids 211 (1997) 208–213.[18] M. Nogami, K. Miyamura, Y. Kawasaki, Y. Abe, Six-coordinated silicon in SrO– P2O5–SiO2 glasses, J. Non-Cryst. Solids 211 (1997) 208–213.
-
[19] T.L. Weeding, B.H.W.S.W. de Jong, S. Veeman, B.G. Aitken, Silicon coordination changes from 4-fold to 6-fold on devitrification of silicon phosphate glass, Nature 318 (1985) 352–353.[19] T.L. Weeding, B.H.W.S.W. de Jong, S. Veeman, B.G. Aitken, Silicon coordination changes from 4-fold to 6-fold on devitrification of silicon phosphate glass, Nature 318 (1985) 352–353.
-
[20] E. Ohtani, F. Taulelle, C.A. Angell, Al3+ coordination changes in liquid aluminosilicates under pressure, Nature 314 (1985) 78–81.[20] E. Ohtani, F. Taulelle, C.A. Angell, Al3+ coordination changes in liquid aluminosilicates under pressure, Nature 314 (1985) 78–81.
-
[21] X. Xue, J.F. Stebbins, M. Kanzaki, R.G. Tronnes, Silicon coordination and speciation changes in a silicate liquid at high pressures, Science 245 (1989) 962–964.[21] X. Xue, J.F. Stebbins, M. Kanzaki, R.G. Tronnes, Silicon coordination and speciation changes in a silicate liquid at high pressures, Science 245 (1989) 962–964.
-
[22] J.F. Stebbins, M. Kanzaki, Local structure and chemical shifts for six-coordinated silicon in high-pressure mantle phases, Science 251 (1991) 294–298.[22] J.F. Stebbins, M. Kanzaki, Local structure and chemical shifts for six-coordinated silicon in high-pressure mantle phases, Science 251 (1991) 294–298.
-
[23] S.D. Kinrade, J.W.D. Nin, A.S. Schach, et al., Stable five- and six-coordinated silicate anions in aqueous solution, Science 285 (1999) 1542–1545.[23] S.D. Kinrade, J.W.D. Nin, A.S. Schach, et al., Stable five- and six-coordinated silicate anions in aqueous solution, Science 285 (1999) 1542–1545.
-
[24] P. Hartmann, C. Jana, J. Vogel, C. Jager, P-31 MAS and 2D exchange NMR of crystalline silicon phosphates, Chem. Phys. Lett. 258 (1996) 107–112.[24] P. Hartmann, C. Jana, J. Vogel, C. Jager, P-31 MAS and 2D exchange NMR of crystalline silicon phosphates, Chem. Phys. Lett. 258 (1996) 107–112.
-
[25] D. Miyabe, M. Takahashi, Y. Tokuda, T. Yoko, T. Uchino, Structure and formation mechanism of six-fold coordinated silicon in phosphosilicate glasses, Phys. Rev. B 71 (2005) 172202.[25] D. Miyabe, M. Takahashi, Y. Tokuda, T. Yoko, T. Uchino, Structure and formation mechanism of six-fold coordinated silicon in phosphosilicate glasses, Phys. Rev. B 71 (2005) 172202.
-
[26] C. Coelho, F. Babonneau, T. Azaís, et al., Chemical bonding in silicophosphate gels: contribution of dipolar and J-derived solid state NMR techniques, J. Sol–Gel. Sci. Technol. 40 (2006) 181–189.[26] C. Coelho, F. Babonneau, T. Azaís, et al., Chemical bonding in silicophosphate gels: contribution of dipolar and J-derived solid state NMR techniques, J. Sol–Gel. Sci. Technol. 40 (2006) 181–189.
-
[27] S.P. Szu, L.C. Klein, M. Greenblatt, Effect of precursors on the structure of phosphosilicate gels-Si-29 and P-31 MAS NMR-study, J. Non-Cryst. Solids 143 (1992) 21–30.[27] S.P. Szu, L.C. Klein, M. Greenblatt, Effect of precursors on the structure of phosphosilicate gels-Si-29 and P-31 MAS NMR-study, J. Non-Cryst. Solids 143 (1992) 21–30.
-
[28] A. Li, D. Wang, J. Xiang, et al., Insights into new calcium phosphosilicate xerogels using an advanced characterization methodology, J. Non-Cryst. Solids 357 (2011) 3548–3555.[28] A. Li, D. Wang, J. Xiang, et al., Insights into new calcium phosphosilicate xerogels using an advanced characterization methodology, J. Non-Cryst. Solids 357 (2011) 3548–3555.
-
[29] R. Dupree, D. Holland, M.G. Mortuza, 6-Coordinated silicon in glasses, Nature 328 (1987) 416–417.[29] R. Dupree, D. Holland, M.G. Mortuza, 6-Coordinated silicon in glasses, Nature 328 (1987) 416–417.
-
[30] S. Prabakar, K.J. Rao, C.N.R. Rao, A MAS NMR investigation of lead phosphosilicate glasses: the nature of the highly deshielded six-coordinated silicon, Mater. Res. Bull. 26 (1991) 285–294.[30] S. Prabakar, K.J. Rao, C.N.R. Rao, A MAS NMR investigation of lead phosphosilicate glasses: the nature of the highly deshielded six-coordinated silicon, Mater. Res. Bull. 26 (1991) 285–294.
-
[31] M.G. Mortuza, M.R. Ahsan, J.A. Chudek, G. Hunter, First evidence for the coexistence of four-, five- and six-coordinated silicon in glasses prepared at ambient pressure, Chem. Commun. (2000) 2055–2056.[31] M.G. Mortuza, M.R. Ahsan, J.A. Chudek, G. Hunter, First evidence for the coexistence of four-, five- and six-coordinated silicon in glasses prepared at ambient pressure, Chem. Commun. (2000) 2055–2056.
-
[32] V. Salih, K. Franks, M. James, G.W. Hastings, J.C. Knowles, Development of soluble glasses for biomedical use: Part II. The biological response of human osteoblast cell lines to phosphate-based soluble glasses, J. Mater. Sci.: Mater. Med. 11 (2000) 615-620.[32] V. Salih, K. Franks, M. James, G.W. Hastings, J.C. Knowles, Development of soluble glasses for biomedical use: Part II. The biological response of human osteoblast cell lines to phosphate-based soluble glasses, J. Mater. Sci.: Mater. Med. 11 (2000) 615-620.
-
-
扫一扫看文章
计量
- PDF下载量: 0
- 文章访问数: 1260
- HTML全文浏览量: 16

下载: