BiOCl nanostructures with different morphologies: Tunable synthesis and visible-light-driven photocatalytic properties

Hong-Ying Hao Yan-Yan Xu Ping Liu Guo-Ying Zhang

Citation:  Hong-Ying Hao, Yan-Yan Xu, Ping Liu, Guo-Ying Zhang. BiOCl nanostructures with different morphologies: Tunable synthesis and visible-light-driven photocatalytic properties[J]. Chinese Chemical Letters, 2015, 26(1): 133-136. doi: 10.1016/j.cclet.2014.11.022 shu

BiOCl nanostructures with different morphologies: Tunable synthesis and visible-light-driven photocatalytic properties

    通讯作者: Yan-Yan Xu,
  • 基金项目:

    This work was supported by the National Natural Science Foundation of China (Nos. 21001081, 21043004)  (Nos. 21001081, 21043004)

    the Education Commission of Tianjin (No. 20110510). (No. 20110510)

摘要: BiOCl nanostructures including microspheres, microflowers, microplates, and nanoplates, have been synthesized by a simple solvothermal method using bismuth nitrate and sodium chloride as raw materials without adding any additives. Structure and morphology of the products were characterized by powder X-ray diffraction, scanning electron microscopy, and transmission electron microscopy. The results indicated that the as-prepared microspheres and microflowers were composed of nanosheets. Although with different shape and lateral size, the nanoplates and microplates were all single-crystalline plates with exposed {001} facets. It was found that the volume ratio of polyethylene glycol 400 and H2O in the solvent played a key role in the morphology of the products, and the possible growth mechanism was also discussed. The photocatalytic measurements indicated that the BiOCl samples exhibit good photocatalytic properties towards Rhodamine B.

English

  • 
    1. [1] C. Burda, X. Chen, R. Narayanan, M.A. El-Sayed, Chemistry and properties of nanocrystals of different shapes, Chem. Rev. 105 (2005) 1025-1102.[1] C. Burda, X. Chen, R. Narayanan, M.A. El-Sayed, Chemistry and properties of nanocrystals of different shapes, Chem. Rev. 105 (2005) 1025-1102.

    2. [2] J.H. Lee, Gas sensors using hierarchical and hollow oxide nanostructures: overview, Sens. Actuators B 140 (2009) 319-336.[2] J.H. Lee, Gas sensors using hierarchical and hollow oxide nanostructures: overview, Sens. Actuators B 140 (2009) 319-336.

    3. [3] L. Peng, L. Hu, X. Fang, Energy harvesting for nanostructured self-powered photodetectors, Adv. Funct. Mater. 24 (2014) 2591-2610.[3] L. Peng, L. Hu, X. Fang, Energy harvesting for nanostructured self-powered photodetectors, Adv. Funct. Mater. 24 (2014) 2591-2610.

    4. [4] S. Han, L. Hu, N. Gao, A.A. Al-Ghamdi, X. Fang, Efficient self-assembly synthesis of uniform CdS spherical nanoparticles-Au nanoparticles hybrids with enhanced photoactivity, Adv. Funct. Mater. 24 (2014) 3725-3733.[4] S. Han, L. Hu, N. Gao, A.A. Al-Ghamdi, X. Fang, Efficient self-assembly synthesis of uniform CdS spherical nanoparticles-Au nanoparticles hybrids with enhanced photoactivity, Adv. Funct. Mater. 24 (2014) 3725-3733.

    5. [5] X.P. Lin, T. Huang, F.Q. Huang, W.D. Wang, J.L. Shi, Photocatalytic activity of a Bibased oxychloride Bi3O4Cl, J. Phys. Chem. B 110 (2006) 24629-24634.[5] X.P. Lin, T. Huang, F.Q. Huang, W.D. Wang, J.L. Shi, Photocatalytic activity of a Bibased oxychloride Bi3O4Cl, J. Phys. Chem. B 110 (2006) 24629-24634.

    6. [6] J. Henle, P. Simon, A. Frenzel, S. Scholz, S. Kaskel, Nanosized BiOX(X = Cl, Br, I) particles synthesized in reverse microemulsions, Chem. Mater. 19 (2007) 366-373.[6] J. Henle, P. Simon, A. Frenzel, S. Scholz, S. Kaskel, Nanosized BiOX(X = Cl, Br, I) particles synthesized in reverse microemulsions, Chem. Mater. 19 (2007) 366-373.

    7. [7] M.A. Gondala, X.F. Chang, Z.H. Yamani, UV-light induced photocatalytic decolorization of Rhodamine 6G molecules over BiOCl from aqueous solution, Chem. Eng. J. 165 (2010) 250-257.[7] M.A. Gondala, X.F. Chang, Z.H. Yamani, UV-light induced photocatalytic decolorization of Rhodamine 6G molecules over BiOCl from aqueous solution, Chem. Eng. J. 165 (2010) 250-257.

    8. [8] K.L. Zhang, C.M. Liu, F.Q. Huang, C. Zheng, W.D. Wang, Study of the electronic structure and photocatalytic activity of the BiOCl photocatalyst original, Appl. Catal. B 68 (2006) 125-129.[8] K.L. Zhang, C.M. Liu, F.Q. Huang, C. Zheng, W.D. Wang, Study of the electronic structure and photocatalytic activity of the BiOCl photocatalyst original, Appl. Catal. B 68 (2006) 125-129.

    9. [9] L.Q. Ye, L. Zan, L.H. Tian, T.Y. Peng, J.J. Zhang, The {0 0 1} facets-dependent high photoactivity of BiOCl nanosheets, Chem. Commun. 47 (2011) 6951-6953.[9] L.Q. Ye, L. Zan, L.H. Tian, T.Y. Peng, J.J. Zhang, The {0 0 1} facets-dependent high photoactivity of BiOCl nanosheets, Chem. Commun. 47 (2011) 6951-6953.

    10. [10] J. Jiang, K. Zhao, X.Y. Xiao, L.Z. Zhang, Synthesis and facet-dependent photoreactivity of BiOCl single-crystalline nanosheets, J. Am. Chem. Soc. 134 (2012) 4473-4476.[10] J. Jiang, K. Zhao, X.Y. Xiao, L.Z. Zhang, Synthesis and facet-dependent photoreactivity of BiOCl single-crystalline nanosheets, J. Am. Chem. Soc. 134 (2012) 4473-4476.

    11. [11] S. Wu, C. Wang, Y. Cui, et al., Synthesis and photocatalytic properties of BiOCl nanowire arrays, Mater. Lett. 64 (2010) 115-118.[11] S. Wu, C. Wang, Y. Cui, et al., Synthesis and photocatalytic properties of BiOCl nanowire arrays, Mater. Lett. 64 (2010) 115-118.

    12. [12] H. Deng, J. Wang, Q. Peng, X. Wang, Y. Li, Controlled hydrothermal synthesis of bismuth oxyhalide nanobelts and nanotubes, Chem. Eur. J. 11 (2005) 6519-6524.[12] H. Deng, J. Wang, Q. Peng, X. Wang, Y. Li, Controlled hydrothermal synthesis of bismuth oxyhalide nanobelts and nanotubes, Chem. Eur. J. 11 (2005) 6519-6524.

    13. [13] J. Xiong, G. Cheng, G. Li, F. Qin, R. Chen, Well-crystallized square-like 2D BiOCl nanoplates: mannitol-assisted hydrothermal synthesis and improved visiblelight- driven photocatalytic performance, RSC Adv. 1 (2011) 1542-1553.[13] J. Xiong, G. Cheng, G. Li, F. Qin, R. Chen, Well-crystallized square-like 2D BiOCl nanoplates: mannitol-assisted hydrothermal synthesis and improved visiblelight- driven photocatalytic performance, RSC Adv. 1 (2011) 1542-1553.

    14. [14] B. Pare, B. Sarwan, S.B. Jonnalagadda, The characteristics and photocatalytic activities of BiOCl as highly efficient photocatalyst, J. Mol. Struct. 1007 (2012) 196-202.[14] B. Pare, B. Sarwan, S.B. Jonnalagadda, The characteristics and photocatalytic activities of BiOCl as highly efficient photocatalyst, J. Mol. Struct. 1007 (2012) 196-202.

    15. [15] J. Song, C. Mao, H. Niu, Y. Shen, S. Zhang, Hierarchical structured bismuth oxychlorides: self-assembly from nanoplates to nanoflowers via a solvothermal route and their photocatalytic properties, CrystEngCommun 12 (2010) 3875- 3881.[15] J. Song, C. Mao, H. Niu, Y. Shen, S. Zhang, Hierarchical structured bismuth oxychlorides: self-assembly from nanoplates to nanoflowers via a solvothermal route and their photocatalytic properties, CrystEngCommun 12 (2010) 3875- 3881.

    16. [16] D.H. Wang, G.Q. Gao, Y.W. Zhang, et al., Nanosheet-constructed porous BiOCl with dominant {0 0 1} facets for superior photosensitized degradation, Nanoscale 4 (2012) 7780-7785.[16] D.H. Wang, G.Q. Gao, Y.W. Zhang, et al., Nanosheet-constructed porous BiOCl with dominant {0 0 1} facets for superior photosensitized degradation, Nanoscale 4 (2012) 7780-7785.

    17. [17] X. Zhang, Z. Ai, F. Jia, L. Zhang, Generalized one-pot synthesis, characterization, and photocatalytic activity of hierarchical BiOX (X = Cl, Br, I) nanoplate microspheres, J. Phys. Chem. C 112 (2008) 747-753.[17] X. Zhang, Z. Ai, F. Jia, L. Zhang, Generalized one-pot synthesis, characterization, and photocatalytic activity of hierarchical BiOX (X = Cl, Br, I) nanoplate microspheres, J. Phys. Chem. C 112 (2008) 747-753.

    18. [18] J. Xiong, G. Cheng, F. Qin, et al., Tunable BiOCl hierarchical nanostructures for high-efficient photocatalysis under visible light irradiation, Chem. Eng. J. 220 (2013) 228-236.[18] J. Xiong, G. Cheng, F. Qin, et al., Tunable BiOCl hierarchical nanostructures for high-efficient photocatalysis under visible light irradiation, Chem. Eng. J. 220 (2013) 228-236.

    19. [19] Z.K. Cui, L.W. Mi, D.W. Zeng, Oriented attachment growth of BiOCl nanosheets with exposed {1 1 0} facets and photocatalytic activity of the hierarchical nanostructures, J. Alloys Compd. 549 (2013) 70-76.[19] Z.K. Cui, L.W. Mi, D.W. Zeng, Oriented attachment growth of BiOCl nanosheets with exposed {1 1 0} facets and photocatalytic activity of the hierarchical nanostructures, J. Alloys Compd. 549 (2013) 70-76.

    20. [20] L.P. Zhu, G.H. Liao, N.C. Bing, et al., Self-assembled 3D BiOCl hierarchitectures: tunable synthesis and characterization, CrystEngComm 12 (2010) 3791-3796.[20] L.P. Zhu, G.H. Liao, N.C. Bing, et al., Self-assembled 3D BiOCl hierarchitectures: tunable synthesis and characterization, CrystEngComm 12 (2010) 3791-3796.

    21. [21] Y. Lei, G. Wang, S. Song, W. Fan, H. Zhang, Synthesis, characterization and assembly of BiOCl nanostructure and their photocatalytic properties, CrystEng- Comm 11 (2009) 1857-1862.[21] Y. Lei, G. Wang, S. Song, W. Fan, H. Zhang, Synthesis, characterization and assembly of BiOCl nanostructure and their photocatalytic properties, CrystEng- Comm 11 (2009) 1857-1862.

    22. [22] J. Xiong, Z. Jiao, G. Lu, et al., Facile and rapid oxidation fabrication of BiOCl hierarchical nanostructures with enhanced photocatalytic properties, Chem. Eur. J. 19 (2013) 9472-9475.[22] J. Xiong, Z. Jiao, G. Lu, et al., Facile and rapid oxidation fabrication of BiOCl hierarchical nanostructures with enhanced photocatalytic properties, Chem. Eur. J. 19 (2013) 9472-9475.

    23. [23] J. Liu, J. Hu, L. Ruan, Y. Wu, Facile and environment friendly synthesis of hierarchical BiOCl flowery microspheres with remarkable photocatalytic properties, Chin. Sci. Bull. 59 (2014) 802-809.[23] J. Liu, J. Hu, L. Ruan, Y. Wu, Facile and environment friendly synthesis of hierarchical BiOCl flowery microspheres with remarkable photocatalytic properties, Chin. Sci. Bull. 59 (2014) 802-809.

    24. [24] W.Q. Fang, J.Z. Zhou, J. Liu, et al., Hierarchical structures of single-crystalline anatase TiO2 nanosheets dominated with {0 0 1} facets, Chem. Eur. J. 17 (2011) 1423-1427.[24] W.Q. Fang, J.Z. Zhou, J. Liu, et al., Hierarchical structures of single-crystalline anatase TiO2 nanosheets dominated with {0 0 1} facets, Chem. Eur. J. 17 (2011) 1423-1427.

    25. [25] Z.H. Zhang, S.H. Liu, S.Y. Chow, M.Y. Han, Modulation of the morphology of ZnO nanostructures via aminolytic reaction: from nanorods to nanosquamas, Langmuir 22 (2006) 6335-6340.[25] Z.H. Zhang, S.H. Liu, S.Y. Chow, M.Y. Han, Modulation of the morphology of ZnO nanostructures via aminolytic reaction: from nanorods to nanosquamas, Langmuir 22 (2006) 6335-6340.

    26. [26] H. Wang, B. Wang, S. Ma, Synthesis of visible-light-driven TiO2 yolk-shell spheres with {0 0 1} facets dominated mesoporous shells, Chin. Chem. Lett. 24 (2013) 260-263.[26] H. Wang, B. Wang, S. Ma, Synthesis of visible-light-driven TiO2 yolk-shell spheres with {0 0 1} facets dominated mesoporous shells, Chin. Chem. Lett. 24 (2013) 260-263.

    27. [27] Z.P. Li, Y.Q. Wen, J.P. Shang, et al., Magnetically recoverable Cu2O/Fe3O4 composite photocatalysts: fabrication and photocatalytic activity, Chin. Chem. Lett. 25 (2014) 287-291.[27] Z.P. Li, Y.Q. Wen, J.P. Shang, et al., Magnetically recoverable Cu2O/Fe3O4 composite photocatalysts: fabrication and photocatalytic activity, Chin. Chem. Lett. 25 (2014) 287-291.

  • 加载中
计量
  • PDF下载量:  0
  • 文章访问数:  1097
  • HTML全文浏览量:  13
文章相关
  • 发布日期:  2014-11-20
  • 收稿日期:  2014-07-02
  • 网络出版日期:  2014-09-29
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章