Chiral electron deficient ruthenium helical coordination polymer as a catalyst for the epoxidation of substituted styrenes

Bahareh Tamaddoni Jahromi Ali Nemati Kharat Sara Zamanian

Citation:  Bahareh Tamaddoni Jahromi, Ali Nemati Kharat, Sara Zamanian. Chiral electron deficient ruthenium helical coordination polymer as a catalyst for the epoxidation of substituted styrenes[J]. Chinese Chemical Letters, 2015, 26(1): 137-140. doi: 10.1016/j.cclet.2014.10.013 shu

Chiral electron deficient ruthenium helical coordination polymer as a catalyst for the epoxidation of substituted styrenes

    通讯作者: Ali Nemati Kharat,
摘要: An air and moisture stable ruthenium(Ⅲ) formate complex [Ru(HCO2)Cl2]n has been synthesized and examined in the epoxidation of substituted styrenes. X-ray crystallographic data of this complex were determined and showed that the formate ligand coordinates to the ruthenium centers in μ2-η2 fashion (syn, syn). Its asymmetric unit contains one Ru(Ⅲ) ion together with the half of a formate ligand and one chloride anion, which are bridged between the metal centers, forming a 1-D chain coordination polymer. This electron deficient helical coordination polymer was employed in the epoxidation of parafluorostyrene, affording the epoxide product in 92% yield. Natural chirality of this coordination polymer is applicable in asymmetric epoxidation reactions.

English

  • 
    1. [1] H. Ogino, Synthesis of silylene and silyl(silylene)metal complexes, Chem. Rec. 2 (2002) 291-306.[1] H. Ogino, Synthesis of silylene and silyl(silylene)metal complexes, Chem. Rec. 2 (2002) 291-306.

    2. [2] X. Zhang, A. Fried, S. Knapp, A.S. Goldman, Novel synthesis of enamines by iridium-catalyzed dehydrogenation of tertiary amines, Chem. Commun. (2003) 2060-2061.[2] X. Zhang, A. Fried, S. Knapp, A.S. Goldman, Novel synthesis of enamines by iridium-catalyzed dehydrogenation of tertiary amines, Chem. Commun. (2003) 2060-2061.

    3. [3] U. Christmann, R. Vilar, Monoligated palladium species as catalysts in crosscoupling reactions, Angew. Chem. Int. Ed. 44 (2005) 366-374.[3] U. Christmann, R. Vilar, Monoligated palladium species as catalysts in crosscoupling reactions, Angew. Chem. Int. Ed. 44 (2005) 366-374.

    4. [4] R. Dorta, R. Goikhman, D. Milstein, Reactivity of [Ir(COE)2(solvent)2]PF6 complexes toward alkylphosphines: room-temperature C-H activation (cyclometalation) and isolation of a 14-electron alkyl-iridium(Ⅲ) complex, Organometallics 22 (2003) 2806-2809.[4] R. Dorta, R. Goikhman, D. Milstein, Reactivity of [Ir(COE)2(solvent)2]PF6 complexes toward alkylphosphines: room-temperature C-H activation (cyclometalation) and isolation of a 14-electron alkyl-iridium(Ⅲ) complex, Organometallics 22 (2003) 2806-2809.

    5. [5] P.A. van der Schaaf, R. Kollya, A. Hafner, A 14-electron ruthenium hydride: the key intermediate in the synthesis of ruthenium carbene complexes; X-ray structure of[RuHCl(PPr3i)2], Chem. Commun. (2000) 1045-1046.[5] P.A. van der Schaaf, R. Kollya, A. Hafner, A 14-electron ruthenium hydride: the key intermediate in the synthesis of ruthenium carbene complexes; X-ray structure of[RuHCl(PPr3i)2], Chem. Commun. (2000) 1045-1046.

    6. [6] C.S. Yi, D.W. Lee, Z.J. He, Acid-promoted homogeneous hydrogenation of alkenes catalyzed by the ruthenium-hydride complex (PCy3)2(CO)(Cl)RuH: evidence for the formation of 14-electron species from the selective entrapment of the phosphine ligand, Organometallics 19 (2000) 2909-2915.[6] C.S. Yi, D.W. Lee, Z.J. He, Acid-promoted homogeneous hydrogenation of alkenes catalyzed by the ruthenium-hydride complex (PCy3)2(CO)(Cl)RuH: evidence for the formation of 14-electron species from the selective entrapment of the phosphine ligand, Organometallics 19 (2000) 2909-2915.

    7. [7] A.C. Sykes, P. White, M. Brookhart, Reactions of anilines and benzamides with a 14-electron iridium(I) bis(phosphinite) complex: N-H oxidative addition versus Lewis base coordination, Organometallics 25 (2006) 1664-1675.[7] A.C. Sykes, P. White, M. Brookhart, Reactions of anilines and benzamides with a 14-electron iridium(I) bis(phosphinite) complex: N-H oxidative addition versus Lewis base coordination, Organometallics 25 (2006) 1664-1675.

    8. [8] C. Watanabe, T. Iwamoto, C. Kabuto, M. Kira, Fourteen-electron bis(dialkylsilylene) palladium and twelve-electron bis(dialkylsilyl)palladium complexes, Angew. Chem. Int. 47 (2008) 5386-5389.[8] C. Watanabe, T. Iwamoto, C. Kabuto, M. Kira, Fourteen-electron bis(dialkylsilylene) palladium and twelve-electron bis(dialkylsilyl)palladium complexes, Angew. Chem. Int. 47 (2008) 5386-5389.

    9. [9] H. Hashimoto, Y. Sekiguchi, T. Iwamoto, C. Kabuto, M. Kira, Synthesis and X-ray structure of a platinum η2-disilene complex, Organometallics 21 (2002) 454-456.[9] H. Hashimoto, Y. Sekiguchi, T. Iwamoto, C. Kabuto, M. Kira, Synthesis and X-ray structure of a platinum η2-disilene complex, Organometallics 21 (2002) 454-456.

    10. [10] A.J. Schultz, J.M. Williams, R.R. Schrock, G.A. Rupprecht, J.D. Fellmann, Interaction of hydrogen and hydrocarbons with transition metals. Neutron diffraction evidence for an activated carbon-hydrogen bond in an electron-deficient tantalum- neopentylidene complex, J. Am. Chem. Soc. 101 (1979) 1593-1595.[10] A.J. Schultz, J.M. Williams, R.R. Schrock, G.A. Rupprecht, J.D. Fellmann, Interaction of hydrogen and hydrocarbons with transition metals. Neutron diffraction evidence for an activated carbon-hydrogen bond in an electron-deficient tantalum- neopentylidene complex, J. Am. Chem. Soc. 101 (1979) 1593-1595.

    11. [11] D.H. Berry, J.H. Chey, H.S. Zipin, P.J. Carroll, Reactivity of molybdenum and tungsten disilene complexes, Polyhedron 10 (1991) 1189-1201.[11] D.H. Berry, J.H. Chey, H.S. Zipin, P.J. Carroll, Reactivity of molybdenum and tungsten disilene complexes, Polyhedron 10 (1991) 1189-1201.

    12. [12] D.H. Berry, J.H. Chey, H.S. Zipin, P.J. Carroll, Disilene complexes of molybdenum and tungsten, J. Am. Chem. Soc. 112 (1990) 452-453.[12] D.H. Berry, J.H. Chey, H.S. Zipin, P.J. Carroll, Disilene complexes of molybdenum and tungsten, J. Am. Chem. Soc. 112 (1990) 452-453.

    13. [13] K.R. Grünwald, G. Saischek, M. Volpe, N.C. Mösch-Zanetti, Mechanistic insight into olefin epoxidation catalyzed by rhenium(v) oxo complexes that contain pyridazine- based ligands, Inorg. Chem. 50 (2011) 7162-7171.[13] K.R. Grünwald, G. Saischek, M. Volpe, N.C. Mösch-Zanetti, Mechanistic insight into olefin epoxidation catalyzed by rhenium(v) oxo complexes that contain pyridazine- based ligands, Inorg. Chem. 50 (2011) 7162-7171.

    14. [14] A. Schröckeneder, P. Traar, G. Raber, et al., Oxorhenium(V) complexes with ketiminato ligands: coordination chemistry and epoxidation of cyclooctene, Inorg. Chem. 48 (2009) 11608-11614.[14] A. Schröckeneder, P. Traar, G. Raber, et al., Oxorhenium(V) complexes with ketiminato ligands: coordination chemistry and epoxidation of cyclooctene, Inorg. Chem. 48 (2009) 11608-11614.

    15. [15] A. Jimtaisong, R.L. Luck, Synthesis and catalytic epoxidation activity with TBHP and H2O2 of dioxo-, oxoperoxo-, and oxodiperoxomolybdenum(VI) and tungsten( VI) compounds containing monodentate or bidentatephosphine oxide ligands: crystal structures of WCl2(O)2(OPMePh2)2, WCl2(O)(O2)(OPMePh2)2, MoCl2(O)2dppmO2 C4H10O, WCl2(O)2dppmO2, Mo(O)(O2)2dppmO2, and W(O)(O2)2dppmO2, Inorg. Chem. 45 (2006) 10391-10402.[15] A. Jimtaisong, R.L. Luck, Synthesis and catalytic epoxidation activity with TBHP and H2O2 of dioxo-, oxoperoxo-, and oxodiperoxomolybdenum(VI) and tungsten( VI) compounds containing monodentate or bidentatephosphine oxide ligands: crystal structures of WCl2(O)2(OPMePh2)2, WCl2(O)(O2)(OPMePh2)2, MoCl2(O)2dppmO2 C4H10O, WCl2(O)2dppmO2, Mo(O)(O2)2dppmO2, and W(O)(O2)2dppmO2, Inorg. Chem. 45 (2006) 10391-10402.

    16. [16] R. Zhang, W.Y. Yu, K.Y. Wong, C.M. Che, Highly efficient asymmetric epoxidation of alkenes with a D4-symmetric chiral dichlororuthenium(IV) porphyrincatalyst, J. Org. Chem. 66 (2001) 8145-8153.[16] R. Zhang, W.Y. Yu, K.Y. Wong, C.M. Che, Highly efficient asymmetric epoxidation of alkenes with a D4-symmetric chiral dichlororuthenium(IV) porphyrincatalyst, J. Org. Chem. 66 (2001) 8145-8153.

    17. [17] S. Bhor, M.K. Tse, M. Klawonn, C. Dobler, M. Beller, Ruthenium-catalyzed asymmetric alkene epoxidation with tert-butyl hydroperoxide as oxidant, Adv. Synth. Catal. 346 (2004) 263-267.[17] S. Bhor, M.K. Tse, M. Klawonn, C. Dobler, M. Beller, Ruthenium-catalyzed asymmetric alkene epoxidation with tert-butyl hydroperoxide as oxidant, Adv. Synth. Catal. 346 (2004) 263-267.

    18. [18] R.I. Kureshy, N.H. Khan, S.H.R. Abdi, Enantioselective catalytic epoxidation of styrenes by iodosylbenzene using chiral ruthenium(Ⅱ) schiff base complexes, J. Mol. Catal. A: Chem. 96 (1995) 117-122.[18] R.I. Kureshy, N.H. Khan, S.H.R. Abdi, Enantioselective catalytic epoxidation of styrenes by iodosylbenzene using chiral ruthenium(Ⅱ) schiff base complexes, J. Mol. Catal. A: Chem. 96 (1995) 117-122.

    19. [19] R.I. Kureshy, N.H. Khan, S.H.R. Abdi, A.K. Bhatt, Asymmetric catalytic epoxidation of styrene by dissymmetric Mn(iii) and Ru(iii) chiral schiff base complexes synthesis and physicochemical studies, J. Mol. Catal. A: Chem. 110 (1996) 33-40.[19] R.I. Kureshy, N.H. Khan, S.H.R. Abdi, A.K. Bhatt, Asymmetric catalytic epoxidation of styrene by dissymmetric Mn(iii) and Ru(iii) chiral schiff base complexes synthesis and physicochemical studies, J. Mol. Catal. A: Chem. 110 (1996) 33-40.

    20. [20] T. Takeda, R. Irie, Y. Shinoda, T. Katsuki, Ru-salen catalyzed asymmetric epoxidation: photoactivation of catalytic activity, Synlett 7 (1999) 1157-1159.[20] T. Takeda, R. Irie, Y. Shinoda, T. Katsuki, Ru-salen catalyzed asymmetric epoxidation: photoactivation of catalytic activity, Synlett 7 (1999) 1157-1159.

    21. [21] C. Stoe, X-STEP32 Version 1.07b: Crystallographic package, GmbH, Darmstadt, Germany, 2000.[21] C. Stoe, X-STEP32 Version 1.07b: Crystallographic package, GmbH, Darmstadt, Germany, 2000.

    22. [22] A. Altomare, G. Cascarano, C. Giacovazzo, et al., A program for automatic solution of crystal structures by direct methods optimized for powder data, J. Appl. Cryst. 27 (1994) 435-436.[22] A. Altomare, G. Cascarano, C. Giacovazzo, et al., A program for automatic solution of crystal structures by direct methods optimized for powder data, J. Appl. Cryst. 27 (1994) 435-436.

    23. [23] G.M. Sheldrick, University of Gottingen, Germany, 2008.[23] G.M. Sheldrick, University of Gottingen, Germany, 2008.

    24. [24] O.B. Deacon, R.J. Phillips, Relationships between the carbon-oxygen stretching frequencies of carboxylato complexes and the type of carboxylate coordination, Coord. Chem. Rev. 33 (1980) 227-250.[24] O.B. Deacon, R.J. Phillips, Relationships between the carbon-oxygen stretching frequencies of carboxylato complexes and the type of carboxylate coordination, Coord. Chem. Rev. 33 (1980) 227-250.

    25. [25] C. Yin, G.C. Huang, C. KuoKuo, et al., Extended metal-atom chains with an inert second row transition metal: [Ru55-tpda)4X2] (tpda2- = tripyridyldiamidotripyridyldiamidodianion, X = Cl and NCS), J. Am. Chem. Soc. 130 (2008) 10090-10092.[25] C. Yin, G.C. Huang, C. KuoKuo, et al., Extended metal-atom chains with an inert second row transition metal: [Ru55-tpda)4X2] (tpda2- = tripyridyldiamidotripyridyldiamidodianion, X = Cl and NCS), J. Am. Chem. Soc. 130 (2008) 10090-10092.

    26. [26] J. Hine, Carbon dichloride as an intermediate in the basic hydrolysis of chloroform. A mechanism for substitution reactions at a saturated carbon atom, J. Am. Chem. Soc. 72 (1950) 2438-2445.[26] J. Hine, Carbon dichloride as an intermediate in the basic hydrolysis of chloroform. A mechanism for substitution reactions at a saturated carbon atom, J. Am. Chem. Soc. 72 (1950) 2438-2445.

  • 加载中
计量
  • PDF下载量:  0
  • 文章访问数:  1179
  • HTML全文浏览量:  12
文章相关
  • 发布日期:  2014-10-22
  • 收稿日期:  2014-06-23
  • 网络出版日期:  2014-10-09
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章