Controlled fabrication of hierarchically microstructured surfaces via surface wrinkling combined with template replication

Chuang Tian Hai-Peng Ji Chuan-Yong Zong Cong-Hua Lu

Citation:  Chuang Tian, Hai-Peng Ji, Chuan-Yong Zong, Cong-Hua Lu. Controlled fabrication of hierarchically microstructured surfaces via surface wrinkling combined with template replication[J]. Chinese Chemical Letters, 2015, 26(1): 15-20. doi: 10.1016/j.cclet.2014.10.003 shu

Controlled fabrication of hierarchically microstructured surfaces via surface wrinkling combined with template replication

    通讯作者: Cong-Hua Lu,
  • 基金项目:

    Advanced Technology (No. 13JCYBJC17100) are gratefully acknowledged. (No. 13JCYBJC17100)

摘要: In this paper, we present a simple method by combining surface wrinkling and template replication to create a series of hierarchical structures on polydimethylsiloxane (PDMS) elastomer. The primary stable lined patterns are formed by duplicating commercialized compact disk and digital versatile disk with PDMS. The secondary microscale patterns are from surface wrinkling, which is elicited by oxygen plasma (OP) treatment of the prestrained PDMS stamp followed with the prestrain release. By systematically varying the OP exposure duration, the prestrain, and the angle (θ) between the primary pattern orientation and the prestrain direction, we obtain highly ordered well-organized composite patterns from different patterning techniques and with different length scales and mechanical stabilities.

English

    1. [1] L. Feng, S.H. Li, Y.S. Li, et al., Super-hydrophobic surfaces: from natural to artificial, Adv. Mater. 4 (2002) 1857-1860.[1] L. Feng, S.H. Li, Y.S. Li, et al., Super-hydrophobic surfaces: from natural to artificial, Adv. Mater. 4 (2002) 1857-1860.

    2. [2] R. Blossey, Self-cleaning surfaces—virtual realities, Nat. Mater. 2 (2003) 301-306.[2] R. Blossey, Self-cleaning surfaces—virtual realities, Nat. Mater. 2 (2003) 301-306.

    3. [3] S.Z. Wu, D. Wu, J. Yao, et al., One-step preparation of regular micropearl arrays for two-direction controllable anisotropic wetting, Langmuir 26 (2010) 12012- 12016.[3] S.Z. Wu, D. Wu, J. Yao, et al., One-step preparation of regular micropearl arrays for two-direction controllable anisotropic wetting, Langmuir 26 (2010) 12012- 12016.

    4. [4] G.S. Watson, J.A. Watson, Natural nano-structures on insects—possible functions of ordered arrays characterized by atomic force microscopy, Appl. Surf. Sci. 235 (2004) 139-144.[4] G.S. Watson, J.A. Watson, Natural nano-structures on insects—possible functions of ordered arrays characterized by atomic force microscopy, Appl. Surf. Sci. 235 (2004) 139-144.

    5. [5] K.H. Smith, E. Tejeda-Montes, M. Poch, Integrating top-down and self-assembly in the fabrication of peptide and protein-based biomedical materials, Chem. Soc. Rev. 40 (2011) 4563-4577.[5] K.H. Smith, E. Tejeda-Montes, M. Poch, Integrating top-down and self-assembly in the fabrication of peptide and protein-based biomedical materials, Chem. Soc. Rev. 40 (2011) 4563-4577.

    6. [6] C.M. Gabardo, Y. Zhu, L. Soleymani, J.M. Moran-Mirabal, Bench-top fabrication of hierarchically structured high-surface-area electrodes, Adv. Funct. Mater. 23 (2013) 3030-3039.[6] C.M. Gabardo, Y. Zhu, L. Soleymani, J.M. Moran-Mirabal, Bench-top fabrication of hierarchically structured high-surface-area electrodes, Adv. Funct. Mater. 23 (2013) 3030-3039.

    7. [7] Y. Xia, J.J. McClelland, R. Gupta, et al., Replica molding using polymeric materials: a practical step toward nanomanufacturing, Adv. Mater. 9 (1997) 147-149.[7] Y. Xia, J.J. McClelland, R. Gupta, et al., Replica molding using polymeric materials: a practical step toward nanomanufacturing, Adv. Mater. 9 (1997) 147-149.

    8. [8] B.D. Gates, G.M. Whitesides, Replication of vertical features smaller than 2 nm by soft lithography, J. Am. Chem. Soc. 125 (2003) 14986-14987.[8] B.D. Gates, G.M. Whitesides, Replication of vertical features smaller than 2 nm by soft lithography, J. Am. Chem. Soc. 125 (2003) 14986-14987.

    9. [9] X. Yan, S. Li, T.R. Cook, et al., Hierarchical self-assembly: well-defined supramolecular nanostructures and metallohydrogels via amphiphilic discrete organoplatinum (Ⅱ) metallacycles, J. Am. Chem. Soc. 135 (2013) 14036-14039.[9] X. Yan, S. Li, T.R. Cook, et al., Hierarchical self-assembly: well-defined supramolecular nanostructures and metallohydrogels via amphiphilic discrete organoplatinum (Ⅱ) metallacycles, J. Am. Chem. Soc. 135 (2013) 14036-14039.

    10. [10] M.D. Ward, P.R. Raithby, Functional behaviour from controlled self-assembly: challenges and prospects, Chem. Soc. Rev. 42 (2013) 1619-1636.[10] M.D. Ward, P.R. Raithby, Functional behaviour from controlled self-assembly: challenges and prospects, Chem. Soc. Rev. 42 (2013) 1619-1636.

    11. [11] Y. Xia, G.M. Whitesides, Soft lithography, Annu. Rev. Mater. Sci. 28 (1998) 153- 184.[11] Y. Xia, G.M. Whitesides, Soft lithography, Annu. Rev. Mater. Sci. 28 (1998) 153- 184.

    12. [12] A. Mata, A.J. Fleischman, S. Roy, Characterization of polydimethylsiloxane (PDMS) properties for biomedical micro/nanosystems, Biomed. Microdev. 7 (2005) 281- 293.[12] A. Mata, A.J. Fleischman, S. Roy, Characterization of polydimethylsiloxane (PDMS) properties for biomedical micro/nanosystems, Biomed. Microdev. 7 (2005) 281- 293.

    13. [13] N. Bowden, S. Brittain, A. Evans, J.W. Hutchinson, G.M. Whitesides, Spontaneous formation of ordered structures in thin films of metals supported on an elastomeric polymer, Nature 393 (1998) 146-149.[13] N. Bowden, S. Brittain, A. Evans, J.W. Hutchinson, G.M. Whitesides, Spontaneous formation of ordered structures in thin films of metals supported on an elastomeric polymer, Nature 393 (1998) 146-149.

    14. [14] J. Genzer, J. Groenewold, Soft matter with hard skin: from skin wrinkles to templating and material characterization, Soft Matter 2 (2006) 310-323.[14] J. Genzer, J. Groenewold, Soft matter with hard skin: from skin wrinkles to templating and material characterization, Soft Matter 2 (2006) 310-323.

    15. [15] Z.Y. Huang, W. Hong, Z. Suo, Nonlinear analyses of wrinkles in a film bonded to a compliant substrate, J. Mech. Phys. Solids 53 (2005) 2101-2118.[15] Z.Y. Huang, W. Hong, Z. Suo, Nonlinear analyses of wrinkles in a film bonded to a compliant substrate, J. Mech. Phys. Solids 53 (2005) 2101-2118.

    16. [16] P.C. Lin, S. Vajpayee, A. Jagota, et al., Mechanically tunable dry adhesive from wrinkled elastomers, Soft Matter 4 (2008) 1830-1835.[16] P.C. Lin, S. Vajpayee, A. Jagota, et al., Mechanically tunable dry adhesive from wrinkled elastomers, Soft Matter 4 (2008) 1830-1835.

    17. [17] K. Efimenko, M. Rackaitis, E. Manias, et al., Nested self-similar wrinkling patterns in skins, Nat. Mater. 4 (2005) 293-297.[17] K. Efimenko, M. Rackaitis, E. Manias, et al., Nested self-similar wrinkling patterns in skins, Nat. Mater. 4 (2005) 293-297.

    18. [18] C.M. Stafford, C. Harrison, K.L. Beers, et al., A buckling-based metrology for measuring the elastic moduli of polymeric thin films, Nat. Mater. 3 (2004) 545-550.[18] C.M. Stafford, C. Harrison, K.L. Beers, et al., A buckling-based metrology for measuring the elastic moduli of polymeric thin films, Nat. Mater. 3 (2004) 545-550.

    19. [19] A.J. Nolte, M.F. Rubner, R.E. Cohen, Determining the Young's modulus of polyelectrolyte multilayer films via stress-induced mechanical buckling instabilities, Macromolecules 38 (2005) 5367-5370.[19] A.J. Nolte, M.F. Rubner, R.E. Cohen, Determining the Young's modulus of polyelectrolyte multilayer films via stress-induced mechanical buckling instabilities, Macromolecules 38 (2005) 5367-5370.

    20. [20] S. Yang, K. Khare, P.C. Lin, Harnessing surface wrinkle patterns in soft matter, Adv. Funct. Mater. 20 (2010) 2550-2564.[20] S. Yang, K. Khare, P.C. Lin, Harnessing surface wrinkle patterns in soft matter, Adv. Funct. Mater. 20 (2010) 2550-2564.

    21. [21] J.Y. Chung, A.J. Nolte, C.M. Stafford, Surface wrinkling: a versatile platform for measuring thin-film properties, Adv. Mater. 23 (2011) 349-368.[21] J.Y. Chung, A.J. Nolte, C.M. Stafford, Surface wrinkling: a versatile platform for measuring thin-film properties, Adv. Mater. 23 (2011) 349-368.

    22. [22] D.Y. Khang, H.Q. Jiang, Y. Huang, J.A. Rogers, A stretchable form of single-crystal silicon for high-performance electronics on rubber substrates, Science 311 (2006) 208-212.[22] D.Y. Khang, H.Q. Jiang, Y. Huang, J.A. Rogers, A stretchable form of single-crystal silicon for high-performance electronics on rubber substrates, Science 311 (2006) 208-212.

    23. [23] M.W. Moon, A. Vaziri, Surface modification of polymers using a multi-step plasma treatment, Scr. Mater. 60 (2009) 44-47.[23] M.W. Moon, A. Vaziri, Surface modification of polymers using a multi-step plasma treatment, Scr. Mater. 60 (2009) 44-47.

    24. [24] C.S. Davis, A.J. Crosby, Wrinkle morphologies with two distinct wavelengths, J. Polym. Sci. Pol. Phys. 50 (2012) 1225-1232.[24] C.S. Davis, A.J. Crosby, Wrinkle morphologies with two distinct wavelengths, J. Polym. Sci. Pol. Phys. 50 (2012) 1225-1232.

    25. [25] J. Yin, C.H. Lu, Hierarchical surface wrinkles directed by wrinkled templates, Soft Matter 8 (2012) 6528-6534.[25] J. Yin, C.H. Lu, Hierarchical surface wrinkles directed by wrinkled templates, Soft Matter 8 (2012) 6528-6534.

    26. [26] J.H. Lee, H.W. Ro, R. Huang, et al., Anisotropic, hierarchical surface patterns via surface wrinkling of nanopatterned polymer films, Nano Lett. 12 (2012) 5995- 5999.[26] J.H. Lee, H.W. Ro, R. Huang, et al., Anisotropic, hierarchical surface patterns via surface wrinkling of nanopatterned polymer films, Nano Lett. 12 (2012) 5995- 5999.

    27. [27] A. Chiche, C.M. Stafford, J.T. Cabral, Complex micropatterning of periodic structures on elastomeric surfaces, Soft Matter 4 (2008) 2360-2364.[27] A. Chiche, C.M. Stafford, J.T. Cabral, Complex micropatterning of periodic structures on elastomeric surfaces, Soft Matter 4 (2008) 2360-2364.

    28. [28] Y. Li, S. Dai, J. John, K.R. Carter, Superhydrophobic surfaces from hierarchically structured wrinkled polymers, ACS Appl. Mater. Inter. 5 (2013) 11066-11073.[28] Y. Li, S. Dai, J. John, K.R. Carter, Superhydrophobic surfaces from hierarchically structured wrinkled polymers, ACS Appl. Mater. Inter. 5 (2013) 11066-11073.

    29. [29] H. Hillborg, J.F. Anknerc, U.W. Gedde, et al., Crosslinked polydimethylsiloxane exposed to oxygen plasma studied by neutron reflectometry and other surface specific techniques, Polymer 41 (2000) 6851-6863.[29] H. Hillborg, J.F. Anknerc, U.W. Gedde, et al., Crosslinked polydimethylsiloxane exposed to oxygen plasma studied by neutron reflectometry and other surface specific techniques, Polymer 41 (2000) 6851-6863.

    30. [30] H. Hillborg, N. Tomczak, A. Olah, et al., Nanoscale hydrophobic recovery: a chemical force microscopy study of UV/ozone-treated cross-linked poly (dimethylsiloxane), Langmuir 20 (2004) 785-794.[30] H. Hillborg, N. Tomczak, A. Olah, et al., Nanoscale hydrophobic recovery: a chemical force microscopy study of UV/ozone-treated cross-linked poly (dimethylsiloxane), Langmuir 20 (2004) 785-794.

    31. [31] J.Y. Park, H.Y. Chae, C.H. Chung, et al., Controlled wavelength reduction in surface wrinkling of poly (dimethylsiloxane), Soft Matter 6 (2010) 677-684.[31] J.Y. Park, H.Y. Chae, C.H. Chung, et al., Controlled wavelength reduction in surface wrinkling of poly (dimethylsiloxane), Soft Matter 6 (2010) 677-684.

    32. [32] N. Bowden, W.T. Huck, K.E. Paul, G.M. Whitesides, The controlled formation of ordered, sinusoidal structures by plasma oxidation of an elastomeric polymer, Appl. Phys. Lett. 75 (1999) 2557-2559.[32] N. Bowden, W.T. Huck, K.E. Paul, G.M. Whitesides, The controlled formation of ordered, sinusoidal structures by plasma oxidation of an elastomeric polymer, Appl. Phys. Lett. 75 (1999) 2557-2559.

    33. [33] D.B.H. Chua, H.T. Ng, S.F.Y. Li, Spontaneous formation of complex and ordered structures on oxygen-plasma-treated elastomeric polydimethylsiloxane, Appl. Phys. Lett. 76 (2000) 721-723.[33] D.B.H. Chua, H.T. Ng, S.F.Y. Li, Spontaneous formation of complex and ordered structures on oxygen-plasma-treated elastomeric polydimethylsiloxane, Appl. Phys. Lett. 76 (2000) 721-723.

    34. [34] H. Jiang, D.Y. Khang, J. Song, et al., Finite deformation mechanics in buckled thin films on compliant supports, Proc. Natl. Acad. Sci. U. S. A. 104 (2007) 15607- 15612.[34] H. Jiang, D.Y. Khang, J. Song, et al., Finite deformation mechanics in buckled thin films on compliant supports, Proc. Natl. Acad. Sci. U. S. A. 104 (2007) 15607- 15612.

    35. [35] D.H. Chu, A. Nemotoa, H. Itoa, Enhancement of dynamic wetting properties by direct fabrication on robust micro-micro hierarchical polymer surfaces, Appl. Surf. Sci. 300 (2014) 117-123.[35] D.H. Chu, A. Nemotoa, H. Itoa, Enhancement of dynamic wetting properties by direct fabrication on robust micro-micro hierarchical polymer surfaces, Appl. Surf. Sci. 300 (2014) 117-123.

    36. [36] J. Feng, M.T. Tuominen, J.P. Rothstein, Hierarchical superhydrophobic surfaces fabricated by dual-scale electron-beam-lithography with well-ordered secondary nanostructures, Adv. Funct. Mater. 21 (2011) 3715-3722.[36] J. Feng, M.T. Tuominen, J.P. Rothstein, Hierarchical superhydrophobic surfaces fabricated by dual-scale electron-beam-lithography with well-ordered secondary nanostructures, Adv. Funct. Mater. 21 (2011) 3715-3722.

    37. [37] C.H. Lu, H. Mohwald, A. Fery, A lithography-free method for directed colloidal crystal assembly based on wrinkling, Soft Matter 3 (2007) 1530-1536.[37] C.H. Lu, H. Mohwald, A. Fery, A lithography-free method for directed colloidal crystal assembly based on wrinkling, Soft Matter 3 (2007) 1530-1536.

    38. [38] D.C. Hyun, G.D. Moon, C.J. Park, et al., Buckling-assisted patterning of multiple polymers, Adv. Mater. 22 (2010) 2642-2646.[38] D.C. Hyun, G.D. Moon, C.J. Park, et al., Buckling-assisted patterning of multiple polymers, Adv. Mater. 22 (2010) 2642-2646.

    39. [39] S.G. Lee, H. Kim, H.H. Choi, et al., Evaporation-induced self-alignment and transfer of semiconductor nanowires by wrinkled elastomeric templates, Adv. Mater. 25 (2013) 2162-2166.[39] S.G. Lee, H. Kim, H.H. Choi, et al., Evaporation-induced self-alignment and transfer of semiconductor nanowires by wrinkled elastomeric templates, Adv. Mater. 25 (2013) 2162-2166.

  • 加载中
计量
  • PDF下载量:  0
  • 文章访问数:  1181
  • HTML全文浏览量:  7
文章相关
  • 发布日期:  2014-10-13
  • 收稿日期:  2014-08-22
  • 网络出版日期:  2014-09-25
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章