A simple, water-soluble, Fe3+-selective fluorescent probe and its application in bioimaging
English
A simple, water-soluble, Fe3+-selective fluorescent probe and its application in bioimaging
-
Key words:
- Fluorescent probe
- / Ferric ion
- / Aqueous solution
- / Fluorescent imaging
-
-
-
[1] (a) B. William, S. Maya, Intracellular labile iron, Int. J. Biochem. Cell Biol. 40 (2008) 350-354;[1] (a) B. William, S. Maya, Intracellular labile iron, Int. J. Biochem. Cell Biol. 40 (2008) 350-354;
-
[2]
(b) C.D. Kaplan, J. Kaplan, Iron acquisition and transcriptional regulation, Chem. Rev. 109 (2009) 4536-4552.(b) C.D. Kaplan, J. Kaplan, Iron acquisition and transcriptional regulation, Chem. Rev. 109 (2009) 4536-4552.
-
[2] (a) B. Halliwell, J.M.C. Gutteridge, Free Radicals in Biology and Medicine, Oxford University Press, Oxford, 1999, pp. 55-56;[2] (a) B. Halliwell, J.M.C. Gutteridge, Free Radicals in Biology and Medicine, Oxford University Press, Oxford, 1999, pp. 55-56;
-
[4]
(b) P. Frank, P. Sandra, E. Dogruöz, et al., Reduction of Fe(Ⅲ) ions complexed to physiological ligands by lipoyl dehydrogenase and other flavoenzymes in vitro, J. Biol. Chem. 278 (2003) 46403-46413;(b) P. Frank, P. Sandra, E. Dogruöz, et al., Reduction of Fe(Ⅲ) ions complexed to physiological ligands by lipoyl dehydrogenase and other flavoenzymes in vitro, J. Biol. Chem. 278 (2003) 46403-46413;
-
[5]
(c) C.H. Robert, X.L. Kong, Iron speciation in the cytosol: an overview, Dalton Trans. 42 (2013) 3220-3229;(c) C.H. Robert, X.L. Kong, Iron speciation in the cytosol: an overview, Dalton Trans. 42 (2013) 3220-3229;
-
[6]
(d) P. Wang, T.A. Okamura, H.P. Zhou, W.Y. Sun, Y.P. Tian, Metal complex with terpyrindine derivative ligand as highly selective colorimetric sensor for iron(Ⅲ), Chin. Chem. Lett. 24 (2013) 20-22.(d) P. Wang, T.A. Okamura, H.P. Zhou, W.Y. Sun, Y.P. Tian, Metal complex with terpyrindine derivative ligand as highly selective colorimetric sensor for iron(Ⅲ), Chin. Chem. Lett. 24 (2013) 20-22.
-
[3] (a) K.M. Dean, Y. Qin, A.E. Palmer, Visualizing metal ions in cells: an overview of analytical techniques, approaches, and probes, Biochim. Biophys. Acta 1823 (2012) 1406-1415;[3] (a) K.M. Dean, Y. Qin, A.E. Palmer, Visualizing metal ions in cells: an overview of analytical techniques, approaches, and probes, Biochim. Biophys. Acta 1823 (2012) 1406-1415;
-
[8]
(b) C. Giselle, M.M. Tania, R.B. Fernanda, Analytical methods for copper, zinc and iron quantification in mammalian cells, Metallomics 5 (2013) 1336-1345.(b) C. Giselle, M.M. Tania, R.B. Fernanda, Analytical methods for copper, zinc and iron quantification in mammalian cells, Metallomics 5 (2013) 1336-1345.
-
[4] (a) H.N. Kim, M.H. Lee, H.J. Kim, J.S. Kim, J. Yoon, A new trend in rhodamine-based chemosensors: application of spirolactam ring-opening to sensing ions, Chem. Soc. Rev. 37 (2008) 1465-1472;[4] (a) H.N. Kim, M.H. Lee, H.J. Kim, J.S. Kim, J. Yoon, A new trend in rhodamine-based chemosensors: application of spirolactam ring-opening to sensing ions, Chem. Soc. Rev. 37 (2008) 1465-1472;
-
[10]
(b) X.Q. Chen, T.H. Pradhan, F. Wang, J.S. Kim, J. Yoon, Fluorescent chemosensors based on spiroring-opening of xanthenes and related derivatives, Chem. Rev. 112 (2012) 1910-1956.(b) X.Q. Chen, T.H. Pradhan, F. Wang, J.S. Kim, J. Yoon, Fluorescent chemosensors based on spiroring-opening of xanthenes and related derivatives, Chem. Rev. 112 (2012) 1910-1956.
-
[5] (a) X. Zhang, Y. Shiraishi, T. Hirai, A new rhodamine derivative bearing an azacrown ether as a selective fluorescent chemosensor for Fe3+ and Hg2+, Tetrahedron Lett. 49 (2008) 4178-4181;[5] (a) X. Zhang, Y. Shiraishi, T. Hirai, A new rhodamine derivative bearing an azacrown ether as a selective fluorescent chemosensor for Fe3+ and Hg2+, Tetrahedron Lett. 49 (2008) 4178-4181;
-
[12]
(b) L.Z. Zhang, J.L. Fan, X.J. Peng, X-ray crystallographic and photophysical properties of rhodamine-based chemosensor for Fe3+, Spectrochim. Acta Part A 73 (2009) 398-402;(b) L.Z. Zhang, J.L. Fan, X.J. Peng, X-ray crystallographic and photophysical properties of rhodamine-based chemosensor for Fe3+, Spectrochim. Acta Part A 73 (2009) 398-402;
-
[13]
(c) T.L. Gao, K.M. Lee, J.Y. Heo, S.I. Yang, A new ferric ion-selective fluorescent chemosensor with a wide dynamic range, Bull. Korean Chem. Soc. 31 (2010) 2100-2102;(c) T.L. Gao, K.M. Lee, J.Y. Heo, S.I. Yang, A new ferric ion-selective fluorescent chemosensor with a wide dynamic range, Bull. Korean Chem. Soc. 31 (2010) 2100-2102;
-
[14]
(d) J.B. Li, Q.H. Hu, X.L. Yu, et al., A novel rhodamine-benzimidazole conjugate as a highly selective turn-on fluorescent probe for Fe3+, J. Fluoresc. 21 (2011) 2005- 2013;(d) J.B. Li, Q.H. Hu, X.L. Yu, et al., A novel rhodamine-benzimidazole conjugate as a highly selective turn-on fluorescent probe for Fe3+, J. Fluoresc. 21 (2011) 2005- 2013;
-
[15]
(e) W.T. Yin, H. Cui, Z. Yang, et al., Facile synthesis and characterization of rhodamine-based colorimetric and "off-on" fluorescent chemosensor for Fe3+, Sens. Actuators B 157 (2011) 675-680;(e) W.T. Yin, H. Cui, Z. Yang, et al., Facile synthesis and characterization of rhodamine-based colorimetric and "off-on" fluorescent chemosensor for Fe3+, Sens. Actuators B 157 (2011) 675-680;
-
[16]
(f) M.Y. She, Z. Yang, B. Yin, et al., A novel rhodamine-based fluorescent and colorimetric"off-on" chemosensor and investigation of the recognizing behavior towards Fe3+, Dyes Pigments 92 (2012) 1337-1343;(f) M.Y. She, Z. Yang, B. Yin, et al., A novel rhodamine-based fluorescent and colorimetric"off-on" chemosensor and investigation of the recognizing behavior towards Fe3+, Dyes Pigments 92 (2012) 1337-1343;
-
[17]
(g) Z. Aydin, Y.B. Wei, M.L. Guo, A highly selective rhodamine based turn-on optical sensor for Fe3+, Inorg. Chem. Commun. 20 (2012) 93-96.(g) Z. Aydin, Y.B. Wei, M.L. Guo, A highly selective rhodamine based turn-on optical sensor for Fe3+, Inorg. Chem. Commun. 20 (2012) 93-96.
-
[6] (a) J.J. Du, M.M. Hu, J.L. Fan, X.J. Peng, Fluorescent chemodosimeters using "mild" chemical events for the detection of small anions and cations in biological and environmental media, Chem. Soc. Rev. 41 (2012) 4511-4535;[6] (a) J.J. Du, M.M. Hu, J.L. Fan, X.J. Peng, Fluorescent chemodosimeters using "mild" chemical events for the detection of small anions and cations in biological and environmental media, Chem. Soc. Rev. 41 (2012) 4511-4535;
-
[19]
(b) M.H. Lynne, J.F. Katherine, Probing oxidative stress: small molecule fluorescent sensors of metal ions, reactive oxygen species, and thiols, Coord. Chem. Rev. 256 (2012) 2333-2356;(b) M.H. Lynne, J.F. Katherine, Probing oxidative stress: small molecule fluorescent sensors of metal ions, reactive oxygen species, and thiols, Coord. Chem. Rev. 256 (2012) 2333-2356;
-
[20]
(c) X.H. Li, X.H. Gao, W. Shi, H.M. Ma, Design strategies for water-soluble small molecular chromogenic and fluorogenic probes, Chem. Rev. 114 (2014) 590-659.(c) X.H. Li, X.H. Gao, W. Shi, H.M. Ma, Design strategies for water-soluble small molecular chromogenic and fluorogenic probes, Chem. Rev. 114 (2014) 590-659.
-
[7] (a) S.R. Liu, S.P. Wu, New water-soluble highly selective fluorescent chemosensor for Fe(Ⅲ) ions and its application to living cell imaging, Sens. Actuators B 171-172 (2012) 1110-1116;[7] (a) S.R. Liu, S.P. Wu, New water-soluble highly selective fluorescent chemosensor for Fe(Ⅲ) ions and its application to living cell imaging, Sens. Actuators B 171-172 (2012) 1110-1116;
-
[22]
(b) H.J. Sheng, X.M. Meng, W.P. Ye, et al., A water-soluble fluorescent probe for Fe(Ⅲ): improved selectivity over Cr(Ⅲ), Sens. Actuators B 195 (2014) 534-539;(b) H.J. Sheng, X.M. Meng, W.P. Ye, et al., A water-soluble fluorescent probe for Fe(Ⅲ): improved selectivity over Cr(Ⅲ), Sens. Actuators B 195 (2014) 534-539;
-
[23]
(c) C.Y. Li, C.X. Zou, Y.F. Li, J.L. Tang, C. Weng, A new rhodamine-based fluorescent chemosensor for Fe3+ and its application in living cell imaging, Dyes Pigments 104 (2014) 110-115;(c) C.Y. Li, C.X. Zou, Y.F. Li, J.L. Tang, C. Weng, A new rhodamine-based fluorescent chemosensor for Fe3+ and its application in living cell imaging, Dyes Pigments 104 (2014) 110-115;
-
[24]
(d) Z. Yang, M.Y. She, B. Yin, et al., Three rhodamine-based "off-on" chemosensors with high selectivity and sensitivity for Fe3+ imaging in living cells, J. Org. Chem. 77 (2012) 1143-1147;(d) Z. Yang, M.Y. She, B. Yin, et al., Three rhodamine-based "off-on" chemosensors with high selectivity and sensitivity for Fe3+ imaging in living cells, J. Org. Chem. 77 (2012) 1143-1147;
-
[25]
(f) M.P. Yang, C.C. Xu, S.N. Li, et al., Three selective and sensitive "off-on" probes based on rhodamine for Fe3+ imaging in living cells, RSC Adv. 4 (2014) 14248- 14253.(f) M.P. Yang, C.C. Xu, S.N. Li, et al., Three selective and sensitive "off-on" probes based on rhodamine for Fe3+ imaging in living cells, RSC Adv. 4 (2014) 14248- 14253.
-
[8] K.N. Raymond, Biomimetic metal encapsulation, Coord. Chem. Rev. 105 (1990) 135-155.[8] K.N. Raymond, Biomimetic metal encapsulation, Coord. Chem. Rev. 105 (1990) 135-155.
-
[9] S.K. Sahoo, D. Sharma, R.K. Bera, G. Crisponi, J.F. Callan, Iron(Ⅲ) selective molecular and supramolecular fluorescent probes, Chem. Soc. Rev. 41 (2012) 7195-7227.[9] S.K. Sahoo, D. Sharma, R.K. Bera, G. Crisponi, J.F. Callan, Iron(Ⅲ) selective molecular and supramolecular fluorescent probes, Chem. Soc. Rev. 41 (2012) 7195-7227.
-
[10] (a) S. Bae, J. Tae, Rhodamine-hydroxamate-based fluorescent chemosensor for FeⅢ, Tetrahedron Lett. 48 (2007) 5389-5392;[10] (a) S. Bae, J. Tae, Rhodamine-hydroxamate-based fluorescent chemosensor for FeⅢ, Tetrahedron Lett. 48 (2007) 5389-5392;
-
[29]
(b) K.S. Moon, Y.K. Yang, S. Ji, J. Tae, Aminoxy-linked rhodamine hydroxamate as fluorescent chemosensor for Fe3+ in aqueous media, Tetrahedron Lett. 51 (2010) 3290-3293.(b) K.S. Moon, Y.K. Yang, S. Ji, J. Tae, Aminoxy-linked rhodamine hydroxamate as fluorescent chemosensor for Fe3+ in aqueous media, Tetrahedron Lett. 51 (2010) 3290-3293.
-
[11] (a) Y. Shiraishi, R. Miyamoto, X. Zhang, T. Hirai, Rhodamine-based fluorescent thermometer exhibiting selective emission enhancement at a specific temperature range, Org. Lett. 9 (2007) 3921-3924;[11] (a) Y. Shiraishi, R. Miyamoto, X. Zhang, T. Hirai, Rhodamine-based fluorescent thermometer exhibiting selective emission enhancement at a specific temperature range, Org. Lett. 9 (2007) 3921-3924;
-
[31]
(b) M.H. Lee, H.J. Kim, S. Yoon, N. Park, J.S. Kim, Metal ion induced FRET off-on in tren/dansyl-appended rhodamine, Org. Lett. 10 (2008) 213-216.(b) M.H. Lee, H.J. Kim, S. Yoon, N. Park, J.S. Kim, Metal ion induced FRET off-on in tren/dansyl-appended rhodamine, Org. Lett. 10 (2008) 213-216.
-
[12] J.D. Chartres, M. Busby, M.J. Riley, J.J. Davis, P.V. Bernhardt, A turn-on fluorescent iron complex and its cellular uptake, Inorg. Chem. 50 (2011) 9178-9183.[12] J.D. Chartres, M. Busby, M.J. Riley, J.J. Davis, P.V. Bernhardt, A turn-on fluorescent iron complex and its cellular uptake, Inorg. Chem. 50 (2011) 9178-9183.
-
[13] A.K. Singh, V.K. Gupta, B. Gupta, Chromium(Ⅲ) selective membrane sensors based on Schiff bases as chelating ionophores, Anal. Chim. Acta 585 (2007) 171-178.[13] A.K. Singh, V.K. Gupta, B. Gupta, Chromium(Ⅲ) selective membrane sensors based on Schiff bases as chelating ionophores, Anal. Chim. Acta 585 (2007) 171-178.
-
[14] R. Patil, A. Moirangthem, R. Butcher, et al., Al3+ selective colorimetric and fluorescent red shifting chemosensor: application in living cell imaging, Dalton Trans. 43 (2014) 2895-2899.[14] R. Patil, A. Moirangthem, R. Butcher, et al., Al3+ selective colorimetric and fluorescent red shifting chemosensor: application in living cell imaging, Dalton Trans. 43 (2014) 2895-2899.
-
-
扫一扫看文章
计量
- PDF下载量: 0
- 文章访问数: 1168
- HTML全文浏览量: 19

下载: