SnO2 hollow nanospheres assembled by single layer nanocrystals as anode material for high performance Li ion batteries

Wei Wei Ling-Xiao Song Lin Guo

Citation:  Wei Wei, Ling-Xiao Song, Lin Guo. SnO2 hollow nanospheres assembled by single layer nanocrystals as anode material for high performance Li ion batteries[J]. Chinese Chemical Letters, 2015, 26(1): 124-128. doi: 10.1016/j.cclet.2014.09.023 shu

SnO2 hollow nanospheres assembled by single layer nanocrystals as anode material for high performance Li ion batteries

    通讯作者: Lin Guo,
  • 基金项目:

    This work was financially supported by the National Basic Research Program of China (Nos. 2010CB934700, 2013CB934004, 2011CB935704)  (Nos. 2010CB934700, 2013CB934004, 2011CB935704)

    National Natural Science Foundation of China (No. 11079002). (No. 11079002)

摘要: SnO2 hollow nanospheres were successfully synthesized via a facile one-step solvothermal method. Characterizations show that the as-prepared SnO2 spheres are of hollow structure with a diameter at around 50 nm, and especially, the shell of the spheres is assembled by single layer SnO2 nanocrystals. The surface area of the material reaches up to 202.5 m2/g. As an anode material for Li ion batteries, the sample exhibited improved electrochemical performance compared with commercial SnO2 particles. After cycled at high current rate of 0.5 C, 1 C and 0.5 C for 20 cycles, respectively, the electrode can maintain a capacity of 509 mAh/g. The suitable shell thickness/diameter ratio endows the good structural stability of the material during cycling, which promises the excellent cycling performance of the electrode. The large surface area and the ultra thin shell ensure the high rate performance of the material.

English

  • 
    1. [1] J.S. Chen, L. Archer, X.W. Lou, SnO2 hollow structures and TiO2 nanosheets for lithium-ion batteries, J. Mater. Chem. 21 (2011) 9912-9924.[1] J.S. Chen, L. Archer, X.W. Lou, SnO2 hollow structures and TiO2 nanosheets for lithium-ion batteries, J. Mater. Chem. 21 (2011) 9912-9924.

    2. [2] X.W. Lou, J.S. Chen, P. Chen, L.A. Archer, One-pot synthesis of carbon-coated SnO2 nanocolloids with improved reversible lithium storage properties, Chem. Mater. 21 (2009) 2868-2874.[2] X.W. Lou, J.S. Chen, P. Chen, L.A. Archer, One-pot synthesis of carbon-coated SnO2 nanocolloids with improved reversible lithium storage properties, Chem. Mater. 21 (2009) 2868-2874.

    3. [3] P. Meduri, E. Clark, E. Dayalan, G.U. Sumanasekera, M.K. Sunkara, Kinetically limited de-lithiation behavior of nanoscale tin-covered tin oxide nanowires, Energy Environ. Sci. 4 (2011) 1695-1699.[3] P. Meduri, E. Clark, E. Dayalan, G.U. Sumanasekera, M.K. Sunkara, Kinetically limited de-lithiation behavior of nanoscale tin-covered tin oxide nanowires, Energy Environ. Sci. 4 (2011) 1695-1699.

    4. [4] Y.M. Li, J.H. Li, Carbon-coated macroporous Sn2P2O7 as anode materials for Li-ion battery, J. Phys. Chem. C 112 (2008) 14216-14219.[4] Y.M. Li, J.H. Li, Carbon-coated macroporous Sn2P2O7 as anode materials for Li-ion battery, J. Phys. Chem. C 112 (2008) 14216-14219.

    5. [5] N.H. Zhao, L.C. Yang, P. Zhang, et al., Polycrystalline SnO2 nanowires coated with amorphous carbon nanotube as anode material for lithium ion batteries, Mater. Lett. 64 (2010) 972-975.[5] N.H. Zhao, L.C. Yang, P. Zhang, et al., Polycrystalline SnO2 nanowires coated with amorphous carbon nanotube as anode material for lithium ion batteries, Mater. Lett. 64 (2010) 972-975.

    6. [6] Z.H. Wen, Q. Wang, Q. Zhang, J. Li, In situ growth of mesoporous SnO2 on multiwalled carbon nanotubes: a novel composite with porous-tube structure as anode for lithium batteries, Adv. Funct. Mater. 17 (2007) 2772-2778.[6] Z.H. Wen, Q. Wang, Q. Zhang, J. Li, In situ growth of mesoporous SnO2 on multiwalled carbon nanotubes: a novel composite with porous-tube structure as anode for lithium batteries, Adv. Funct. Mater. 17 (2007) 2772-2778.

    7. [7] N.H. Zhao, G.J. Wang, Y. Huang, et al., Preparation of nanowire arrays of amorphous carbon nanotube-coated single crystal SnO2, Chem. Mater. 20 (2008) 2612- 2614.[7] N.H. Zhao, G.J. Wang, Y. Huang, et al., Preparation of nanowire arrays of amorphous carbon nanotube-coated single crystal SnO2, Chem. Mater. 20 (2008) 2612- 2614.

    8. [8] Y.M. Li, X.J. Lü, J. Lu, J.H. Li, Preparation of SnO2-nanocrystal/graphene-nanosheets composites and their lithium storage ability, J. Phys. Chem. C 114 (2010) 21770- 21774.[8] Y.M. Li, X.J. Lü, J. Lu, J.H. Li, Preparation of SnO2-nanocrystal/graphene-nanosheets composites and their lithium storage ability, J. Phys. Chem. C 114 (2010) 21770- 21774.

    9. [9] S.J. Ding, D.Y. Luan, F. Boey, et al., SnO2 nanosheets grown on graphene sheets with enhanced lithium storage properties, Chem. Commun. 47 (2011) 7155-7157.[9] S.J. Ding, D.Y. Luan, F. Boey, et al., SnO2 nanosheets grown on graphene sheets with enhanced lithium storage properties, Chem. Commun. 47 (2011) 7155-7157.

    10. [10] Q. Wang, Z.H. Wen, J.H. Li, Fast and reversible lithium-induced electrochemical alloying in tin-based composite oxide hierarchical microspheres assembled by nanoplate building blocks, J. Power Sources 182 (2008) 334-339.[10] Q. Wang, Z.H. Wen, J.H. Li, Fast and reversible lithium-induced electrochemical alloying in tin-based composite oxide hierarchical microspheres assembled by nanoplate building blocks, J. Power Sources 182 (2008) 334-339.

    11. [11] H. Wang, Q.Q. Liang, W.J. Wang, et al., Preparation of flower-like SnO2 nanostructures and their applications in gas-sensing and lithium storage, Cryst. Growth Des. 11 (2011) 2942-2947.[11] H. Wang, Q.Q. Liang, W.J. Wang, et al., Preparation of flower-like SnO2 nanostructures and their applications in gas-sensing and lithium storage, Cryst. Growth Des. 11 (2011) 2942-2947.

    12. [12] F. Wang, S. Xiao, Z. Chang, Y.Q. Yang, Y.P. Wu, Nanoporous LiNi1/3Co1/3Mn1/3O2 as an ultra-fast charge cathode material for aqueous rechargeable lithium batteries, Chem. Commun. 49 (2013) 9209-9211.[12] F. Wang, S. Xiao, Z. Chang, Y.Q. Yang, Y.P. Wu, Nanoporous LiNi1/3Co1/3Mn1/3O2 as an ultra-fast charge cathode material for aqueous rechargeable lithium batteries, Chem. Commun. 49 (2013) 9209-9211.

    13. [13] W. Tang, Y.Y. Hou, F.X. Wang, et al., LiMn2O4 nanotube as cathode material of second-level charge capability for aqueous rechargeable batteries, Nano Lett. 13 (2013) 2036-2040.[13] W. Tang, Y.Y. Hou, F.X. Wang, et al., LiMn2O4 nanotube as cathode material of second-level charge capability for aqueous rechargeable batteries, Nano Lett. 13 (2013) 2036-2040.

    14. [14] X.M. Yin, C.C. Li, M. Zhang, et al., One-step synthesis of hierarchical SnO2 hollow nanostructures via self-assembly for high power lithium ion batteries, J. Phys. Chem. C 114 (2010) 8084-8088.[14] X.M. Yin, C.C. Li, M. Zhang, et al., One-step synthesis of hierarchical SnO2 hollow nanostructures via self-assembly for high power lithium ion batteries, J. Phys. Chem. C 114 (2010) 8084-8088.

    15. [15] H.X. Yang, J.F. Qian, Z.X. Chen, X.P. Ai, Y.L. Cao, Multilayered nanocrystalline SnO2 hollow microspheres synthesized by chemically induced self-assembly in the hydrothermal environment, J. Phys. Chem. C 111 (2007) 14067-14071.[15] H.X. Yang, J.F. Qian, Z.X. Chen, X.P. Ai, Y.L. Cao, Multilayered nanocrystalline SnO2 hollow microspheres synthesized by chemically induced self-assembly in the hydrothermal environment, J. Phys. Chem. C 111 (2007) 14067-14071.

    16. [16] D. Deng, J. Lee, Hollow core-shell mesospheres of crystalline SnO2 nanoparticle aggregates for high capacity Li+ ion storage, Chem. Mater. 20 (2008) 1841-1846.[16] D. Deng, J. Lee, Hollow core-shell mesospheres of crystalline SnO2 nanoparticle aggregates for high capacity Li+ ion storage, Chem. Mater. 20 (2008) 1841-1846.

    17. [17] X.W. Lou,D.Deng, J.Y. Lee, L.A.Archer, PreparationofSnO2/carboncomposite hollow spheres and their lithium storage properties, Chem. Mater. 20 (2008) 6562-6566.[17] X.W. Lou,D.Deng, J.Y. Lee, L.A.Archer, PreparationofSnO2/carboncomposite hollow spheres and their lithium storage properties, Chem. Mater. 20 (2008) 6562-6566.

    18. [18] S.J. Ding, J.S. Chen, G.G. Qi, et al., Formation of SnO2 hollow nanospheres inside mesoporous silica nanoreactors, J. Am. Chem. Soc. 133 (2011) 21-23.[18] S.J. Ding, J.S. Chen, G.G. Qi, et al., Formation of SnO2 hollow nanospheres inside mesoporous silica nanoreactors, J. Am. Chem. Soc. 133 (2011) 21-23.

    19. [19] W. Wei, S. Gao, Z. Yang, et al., Porous SnO2 nanocubes with controllable pore volume and their Li storage performance, RSC Adv. 4 (2014) 13250-13255.[19] W. Wei, S. Gao, Z. Yang, et al., Porous SnO2 nanocubes with controllable pore volume and their Li storage performance, RSC Adv. 4 (2014) 13250-13255.

    20. [20] Z.W. Deng, M. Chen, G.X. Gu, L. Wu, A facile method to fabricate ZnO hollow spheres and their photocatalytic property, J. Phys. Chem. B 112 (2008) 16-22.[20] Z.W. Deng, M. Chen, G.X. Gu, L. Wu, A facile method to fabricate ZnO hollow spheres and their photocatalytic property, J. Phys. Chem. B 112 (2008) 16-22.

    21. [21] H.J. Zhang, J. Wu, L.P. Zhou, D.Y. Zhang, L.M. Qi, Facile synthesis of monodisperse microspheres and gigantic hollow shells of mesoporous silica in mixed water- ethanol solvents, Langmuir 23 (2007) 1107-1113.[21] H.J. Zhang, J. Wu, L.P. Zhou, D.Y. Zhang, L.M. Qi, Facile synthesis of monodisperse microspheres and gigantic hollow shells of mesoporous silica in mixed water- ethanol solvents, Langmuir 23 (2007) 1107-1113.

    22. [22] C. Li, W. Wei, S.M. Fang, et al., A novel CuO-nanotube/SnO2 composite as the anode material for lithium ion batteries, J. Power Sources 195 (2010) 2939-2944.[22] C. Li, W. Wei, S.M. Fang, et al., A novel CuO-nanotube/SnO2 composite as the anode material for lithium ion batteries, J. Power Sources 195 (2010) 2939-2944.

    23. [23] J.F. Liang, W. Wei, D. Zhong, et al., One-step in situ synthesis of SnO2/graphene nanocomposites and its application as an anode material for Li-ion batteries, ACS Appl. Mater. Interfaces 4 (2012) 454-459.[23] J.F. Liang, W. Wei, D. Zhong, et al., One-step in situ synthesis of SnO2/graphene nanocomposites and its application as an anode material for Li-ion batteries, ACS Appl. Mater. Interfaces 4 (2012) 454-459.

  • 加载中
计量
  • PDF下载量:  0
  • 文章访问数:  1139
  • HTML全文浏览量:  9
文章相关
  • 发布日期:  2014-10-16
  • 收稿日期:  2014-08-06
  • 网络出版日期:  2014-09-18
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章