Synthesis of nucleoside tetraphosphates and dinucleoside pentaphosphates from nucleoside phosphoropiperidates via the activation of P(V)-N bond

Qi Sun Jian Sun Shan-Shan Gong Cheng-Jun Wang Xing-Cong Wang

Citation:  Qi Sun, Jian Sun, Shan-Shan Gong, Cheng-Jun Wang, Xing-Cong Wang. Synthesis of nucleoside tetraphosphates and dinucleoside pentaphosphates from nucleoside phosphoropiperidates via the activation of P(V)-N bond[J]. Chinese Chemical Letters, 2015, 26(1): 89-92. doi: 10.1016/j.cclet.2014.09.015 shu

Synthesis of nucleoside tetraphosphates and dinucleoside pentaphosphates from nucleoside phosphoropiperidates via the activation of P(V)-N bond

    通讯作者: Qi Sun,
  • 基金项目:

    Key Project of Chinese Ministry of Education (No. 212092) (No. 212092)

    Social Security for Returned Chinese Scholars (2011) (2011)

    Startup Funds for PhDs (2010) from JXSTNU for financial support. (2010)

摘要: A novel and efficient method for the preparation of nucleoside 50-tetraphosphates has been developed by coupling nucleoside 5'-phosphoropiperidates with triphosphate reagent in the presence of 4, 5-dicyanoimidazole (DCI) activator. Further coupling of the nucleoside 5'-tetraphosphates with nucleoside 50-phosphoropiperidates via the P(V)-N activation strategy provided a reliable synthetic method for both symmetrical and asymmetrical dinucleoside pentaphosphates.

English

  • 
    1. [1] (a) V. Jankowski, M. van der Giet, H. Mischak, et al., Dinucleoside polyphosphates: strong endogenous agonists of the purinergic system, Br. J. Pharmacol. 157 (2009) 1142-1153;[1] (a) V. Jankowski, M. van der Giet, H. Mischak, et al., Dinucleoside polyphosphates: strong endogenous agonists of the purinergic system, Br. J. Pharmacol. 157 (2009) 1142-1153;

    2. [2]

      (b) E.G. Delicado, M.T. Miras-Portugal, L.M. Carrasquero, et al., Dinucleoside polyphosphates and their interaction with other nucleotide signaling pathways, Pflugers Arch. 452 (2006) 563-572.(b) E.G. Delicado, M.T. Miras-Portugal, L.M. Carrasquero, et al., Dinucleoside polyphosphates and their interaction with other nucleotide signaling pathways, Pflugers Arch. 452 (2006) 563-572.

    3. [2] (a) H. Schlüter, E. Offers, G. Brüggemann, et al., Diadenosine phosphates and the physiological control of blood pressure, Nature 367 (1994) 186-188;[2] (a) H. Schlüter, E. Offers, G. Brüggemann, et al., Diadenosine phosphates and the physiological control of blood pressure, Nature 367 (1994) 186-188;

    4. [4]

      (b) M. van der Giet, S. Schmidt, M. Tölle, et al., Effects of dinucleoside polyphosphates on regulation of coronary vascular tone, Eur. J. Pharmacol. 448 (2002) 207-213;(b) M. van der Giet, S. Schmidt, M. Tölle, et al., Effects of dinucleoside polyphosphates on regulation of coronary vascular tone, Eur. J. Pharmacol. 448 (2002) 207-213;

    5. [5]

      (c) V. Jankowski, S. Karadogan, R. Vanholder, et al., Paracrine stimulation of vascular smooth muscle proliferation by diadenosine polyphosphates released from proximal tubule epithelial cells, Kidney Int. 71 (2007) 994-1000.(c) V. Jankowski, S. Karadogan, R. Vanholder, et al., Paracrine stimulation of vascular smooth muscle proliferation by diadenosine polyphosphates released from proximal tubule epithelial cells, Kidney Int. 71 (2007) 994-1000.

    6. [3] M. van der Giet, T. Westhoff, O. Cinkilic, et al., The critical role of adenosine and guanosine in the affinity of dinucleoside polyphosphates to P(2X)-receptors in the isolated perfused rat kidney, Br. J. Pharmacol. 132 (2001) 467-474.[3] M. van der Giet, T. Westhoff, O. Cinkilic, et al., The critical role of adenosine and guanosine in the affinity of dinucleoside polyphosphates to P(2X)-receptors in the isolated perfused rat kidney, Br. J. Pharmacol. 132 (2001) 467-474.

    7. [4] J. Jankowski, V. Jankowski, B. Seibt, et al., Identification of dinucleoside polyphosphates in adrenal glands, Biochem. Biophys. Res. Commun. 304 (2003) 365-370.[4] J. Jankowski, V. Jankowski, B. Seibt, et al., Identification of dinucleoside polyphosphates in adrenal glands, Biochem. Biophys. Res. Commun. 304 (2003) 365-370.

    8. [5] (a) N. Stern, D.T. Major, H.E. Gottlieb, et al., What is the conformation of physiologically active dinucleoside polyphosphates in solution? Conformational analysis of free dinucleoside polyphosphates by NMR and molecular dynamics simulations, Org. Biomol. Chem. 8 (2010) 4637-4652;[5] (a) N. Stern, D.T. Major, H.E. Gottlieb, et al., What is the conformation of physiologically active dinucleoside polyphosphates in solution? Conformational analysis of free dinucleoside polyphosphates by NMR and molecular dynamics simulations, Org. Biomol. Chem. 8 (2010) 4637-4652;

    9. [9]

      (b) K.A. Henzler-Wildman, V. Thai, M. Lei, et al., Intrinsic motions along an enzymatic reaction trajectory, Nature 450 (2007) 838-844.(b) K.A. Henzler-Wildman, V. Thai, M. Lei, et al., Intrinsic motions along an enzymatic reaction trajectory, Nature 450 (2007) 838-844.

    10. [6] W. Pendergast, B.R. Yerxa, J.G. Douglass, et al., Synthesis and P2Y receptor activity of a series of uridine dinucleoside 5'-polyphosphates, Bioorg. Med. Chem. Lett. 11 (2001) 157-160.[6] W. Pendergast, B.R. Yerxa, J.G. Douglass, et al., Synthesis and P2Y receptor activity of a series of uridine dinucleoside 5'-polyphosphates, Bioorg. Med. Chem. Lett. 11 (2001) 157-160.

    11. [7] L.C. Davies, J.A. Stock, S.E. Barrie, et al., Dinucleotide analogues as inhibitors of thymidine kinase, thymidylate kinase, and ribonucleotide reductase, J. Med. Chem. 31 (1988) 1305-1308.[7] L.C. Davies, J.A. Stock, S.E. Barrie, et al., Dinucleotide analogues as inhibitors of thymidine kinase, thymidylate kinase, and ribonucleotide reductase, J. Med. Chem. 31 (1988) 1305-1308.

    12. [8] (a) P. Feldhau, T. Fröhlich, R.S. Goody, et al., Synthetic inhibitors of adenylate kinases in the assays for ATPases and phosphokinases, Eur. J. Biochem. 57 (1975) 197-204;[8] (a) P. Feldhau, T. Fröhlich, R.S. Goody, et al., Synthetic inhibitors of adenylate kinases in the assays for ATPases and phosphokinases, Eur. J. Biochem. 57 (1975) 197-204;

    13. [13]

      (b) J. Köhrle, K.S. Boos, E. Schlimme, Preparation of [14C]-P1,P5-di(adenosine 50- )pentaphosphate by direct reaction of [14C]-adenosine 50-diphosphate with activated adenosine 50-triphosphate, Liebigs Ann. Chem. (1977) 1160-1166;(b) J. Köhrle, K.S. Boos, E. Schlimme, Preparation of [14C]-P1,P5-di(adenosine 50- )pentaphosphate by direct reaction of [14C]-adenosine 50-diphosphate with activated adenosine 50-triphosphate, Liebigs Ann. Chem. (1977) 1160-1166;

    14. [14]

      (c) A. Hampton, F. Kappler, D. Picker, Species- or isozyme-specific enzyme inhibitors. 4. Design of a two-site inhibitor of adenylate kinase with isozyme selectivity, J. Med. Chem. 25 (1982) 638-644.(c) A. Hampton, F. Kappler, D. Picker, Species- or isozyme-specific enzyme inhibitors. 4. Design of a two-site inhibitor of adenylate kinase with isozyme selectivity, J. Med. Chem. 25 (1982) 638-644.

    15. [9] Q. Han, B.L. Gaffney, R.A. Jones, One-flask synthesis of dinucleoside tetra- and pentaphosphates, Org. Lett. 8 (2006) 2075-2077.[9] Q. Han, B.L. Gaffney, R.A. Jones, One-flask synthesis of dinucleoside tetra- and pentaphosphates, Org. Lett. 8 (2006) 2075-2077.

    16. [10] S. Mohamady, S.D. Taylor, Synthesis of nucleoside tetraphosphates and dinucleoside pentaphosphates via activation of cyclic trimetaphosphate, Org. Lett. 15 (2013) 2612-2615.[10] S. Mohamady, S.D. Taylor, Synthesis of nucleoside tetraphosphates and dinucleoside pentaphosphates via activation of cyclic trimetaphosphate, Org. Lett. 15 (2013) 2612-2615.

    17. [11] (a) Q. Sun, S.S. Gong, J. Sun, et al., A P(V)-N activation strategy for synthesis of nucleoside polyphosphates, J. Org. Chem. 78 (2013) 8417-8426;[11] (a) Q. Sun, S.S. Gong, J. Sun, et al., A P(V)-N activation strategy for synthesis of nucleoside polyphosphates, J. Org. Chem. 78 (2013) 8417-8426;

    18. [18]

      (b) Q. Sun, S.S. Gong, J. Sun, et al., Efficient synthesis of nucleoside 5'-triphosphates and their β,γ-bridging oxygen-modified analogs from nucleoside 5'-phosphates, Tetrahedron Lett. 55 (2014) 2114-2118;(b) Q. Sun, S.S. Gong, J. Sun, et al., Efficient synthesis of nucleoside 5'-triphosphates and their β,γ-bridging oxygen-modified analogs from nucleoside 5'-phosphates, Tetrahedron Lett. 55 (2014) 2114-2118;

    19. [19]

      (c) Q. Sun, J. Sun, S.S. Gong, et al., Efficient synthesis of 5-hydroxymethyl-, 5- formyl-, and 5-carboxyl-2'-deoxycytidine and their triphosphates, RSC Adv. 4 (2014) 36036-36039;(c) Q. Sun, J. Sun, S.S. Gong, et al., Efficient synthesis of 5-hydroxymethyl-, 5- formyl-, and 5-carboxyl-2'-deoxycytidine and their triphosphates, RSC Adv. 4 (2014) 36036-36039;

    20. [20]

      (d) Q. Sun, S.S. Gong, S. Liu, et al., 4,5-Dicyanoimidazole-promoted synthesis of dinucleoside polyphosphates and their analogs, Tetrahedron 70 (2014) 4500-4506;(d) Q. Sun, S.S. Gong, S. Liu, et al., 4,5-Dicyanoimidazole-promoted synthesis of dinucleoside polyphosphates and their analogs, Tetrahedron 70 (2014) 4500-4506;

    21. [21]

      (e) Q. Sun, X.J. Li, J. Sun, et al., An improved P(V)-N activation strategy for the synthesis of nucleoside diphosphate 6-deoxy-L-sugars, Tetrahedron 70 (2014) 294-300;(e) Q. Sun, X.J. Li, J. Sun, et al., An improved P(V)-N activation strategy for the synthesis of nucleoside diphosphate 6-deoxy-L-sugars, Tetrahedron 70 (2014) 294-300;

    22. [22]

      (f) Q. Sun, S. Liu, J. Sun, et al., An H-phosphonate strategy for the synthesis of 2', 3'-dideoxynucleoside triphosphates and homodinucleotides, Chin. Chem. Lett. 25 (2014) 427-430.(f) Q. Sun, S. Liu, J. Sun, et al., An H-phosphonate strategy for the synthesis of 2', 3'-dideoxynucleoside triphosphates and homodinucleotides, Chin. Chem. Lett. 25 (2014) 427-430.

    23. [12] (a) A.R. Kore, Z. Xiao, A. Senthilvelan, et al., An efficient synthesis of pyrimidine specific 2'-deoxynucleoside-5'-tetraphosphates, Nucleosides Nucleotides Nucleic Acids 31 (2012) 567-573;[12] (a) A.R. Kore, Z. Xiao, A. Senthilvelan, et al., An efficient synthesis of pyrimidine specific 2'-deoxynucleoside-5'-tetraphosphates, Nucleosides Nucleotides Nucleic Acids 31 (2012) 567-573;

    24. [24]

      (b) A.R. Kore, A. Senthilvelan, M. Shanmugasundaram, A new, facile, and protection- free one-pot chemical synthesis of 2'-deoxynucleoside-5'-tetraphosphates, Tetrahedron Lett. 53 (2012) 5868-5870.(b) A.R. Kore, A. Senthilvelan, M. Shanmugasundaram, A new, facile, and protection- free one-pot chemical synthesis of 2'-deoxynucleoside-5'-tetraphosphates, Tetrahedron Lett. 53 (2012) 5868-5870.

  • 加载中
计量
  • PDF下载量:  0
  • 文章访问数:  1229
  • HTML全文浏览量:  26
文章相关
  • 发布日期:  2014-09-19
  • 收稿日期:  2014-06-12
  • 网络出版日期:  2014-09-11
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章