CdS quantum dot sensitized p-type NiO as photocathode with integrated cobaloxime in photoelectrochemical cell for water splitting
English
CdS quantum dot sensitized p-type NiO as photocathode with integrated cobaloxime in photoelectrochemical cell for water splitting
-
Key words:
- Quantum dot
- / Photocathode
- / Cobaloxime
- / Photoelectrochemical cell
- / Water splitting
-
-
-
[1] N.S. Lewis, D.G. Nocera, Powering the planet: chemical challenges in solar energy utilization, Proc. Natl. Acad. Sci. U. S. A. 103 (2006) 15729-15735.[1] N.S. Lewis, D.G. Nocera, Powering the planet: chemical challenges in solar energy utilization, Proc. Natl. Acad. Sci. U. S. A. 103 (2006) 15729-15735.
-
[2] J. Barber, Photosynthetic energy conversion: natural and artificial, Chem. Soc. Rev. 38 (2009) 185-196.[2] J. Barber, Photosynthetic energy conversion: natural and artificial, Chem. Soc. Rev. 38 (2009) 185-196.
-
[3] T.R. Cook, D.K. Dogutan, S.Y. Reece, et al., Solar energy supply and storage for the legacy and nonlegacy worlds, Chem. Rev. 110 (2010) 6474-6502.[3] T.R. Cook, D.K. Dogutan, S.Y. Reece, et al., Solar energy supply and storage for the legacy and nonlegacy worlds, Chem. Rev. 110 (2010) 6474-6502.
-
[4] M. Winter, R.J. Brodd, What are batteries, fuel cells, and supercapacitors? Chem. Rev. 104 (2004) 4245-4270.[4] M. Winter, R.J. Brodd, What are batteries, fuel cells, and supercapacitors? Chem. Rev. 104 (2004) 4245-4270.
-
[5] H.S. Zhai, L. Cao, X.H. Xia, Synthesis of graphitic carbon nitride through pyrolysis of melamine and its electrocatalysis for oxygen reduction reaction, Chin. Chem. Lett. 24 (2013) 103-106.[5] H.S. Zhai, L. Cao, X.H. Xia, Synthesis of graphitic carbon nitride through pyrolysis of melamine and its electrocatalysis for oxygen reduction reaction, Chin. Chem. Lett. 24 (2013) 103-106.
-
[6] M.G. Walter, E.L. Warren, J.R. McKone, et al., Solar water splitting cells, Chem. Rev. 110 (2010) 6446-6473.[6] M.G. Walter, E.L. Warren, J.R. McKone, et al., Solar water splitting cells, Chem. Rev. 110 (2010) 6446-6473.
-
[7] M. Wang, L. Sun, Hydrogen production by noble-metal-free molecular catalysts and related nanomaterials, ChemSusChem 3 (2010) 551-554.[7] M. Wang, L. Sun, Hydrogen production by noble-metal-free molecular catalysts and related nanomaterials, ChemSusChem 3 (2010) 551-554.
-
[8] V. Artero, M. Chavarot-Kerlidou, M. Fontecave, Splitting water with cobalt, Angew. Chem. Int. Ed. 50 (2011) 7238-7266.[8] V. Artero, M. Chavarot-Kerlidou, M. Fontecave, Splitting water with cobalt, Angew. Chem. Int. Ed. 50 (2011) 7238-7266.
-
[9] F.Y. Wen, J.H. Yang, X. Zong, et al., Photocatalytic H2 production on hybrid catalyst system composed of inorganic semiconductor and cobaloximes catalysts, J. Catal. 218 (2011) 318-324.[9] F.Y. Wen, J.H. Yang, X. Zong, et al., Photocatalytic H2 production on hybrid catalyst system composed of inorganic semiconductor and cobaloximes catalysts, J. Catal. 218 (2011) 318-324.
-
[10] J. Huang, K.L. Mulfort, P. Du, L.X. Chen, Photodriven charge separation dynamics in CdSe/ZnS core/shell quantum dot/cobaloxime hybrid for efficient hydrogen production, J. Am. Chem. Soc. 134 (2012) 16472-16475.[10] J. Huang, K.L. Mulfort, P. Du, L.X. Chen, Photodriven charge separation dynamics in CdSe/ZnS core/shell quantum dot/cobaloxime hybrid for efficient hydrogen production, J. Am. Chem. Soc. 134 (2012) 16472-16475.
-
[11] P.D. Tran, V. Artero, M. Fontecave, Water electrolysis and photoelectrolysis on electrodes engineered using biological and bio-inspired molecular systems, Energy Environ. Sci. 3 (2010) 727-747.[11] P.D. Tran, V. Artero, M. Fontecave, Water electrolysis and photoelectrolysis on electrodes engineered using biological and bio-inspired molecular systems, Energy Environ. Sci. 3 (2010) 727-747.
-
[12] A. Krawicz, J. Yang, E. Anzenberg, et al., Photofunctional construct that interfaces molecular cobalt-based catalysts for H2 production to a visible-light-absorbing semiconductor, J. Am. Chem. Soc. 135 (2013) 11861-11868.[12] A. Krawicz, J. Yang, E. Anzenberg, et al., Photofunctional construct that interfaces molecular cobalt-based catalysts for H2 production to a visible-light-absorbing semiconductor, J. Am. Chem. Soc. 135 (2013) 11861-11868.
-
[13] L. Li, L. Duan, F. Wen, et al., Visible light driven hydrogen production from a photoactive cathode based on a molecular catalyst and organic dye-sensitized p-type nanostructured NiO, Chem. Commun. 48 (2012) 988-990.[13] L. Li, L. Duan, F. Wen, et al., Visible light driven hydrogen production from a photoactive cathode based on a molecular catalyst and organic dye-sensitized p-type nanostructured NiO, Chem. Commun. 48 (2012) 988-990.
-
[14] S.H. Kang, K. Zhu, N.R. Neale, A.J. Frank, Hole transport in sensitized CdS-NiO nanoparticle photocathodes, Chem. Commun. 47 (2011) 10419-10421.[14] S.H. Kang, K. Zhu, N.R. Neale, A.J. Frank, Hole transport in sensitized CdS-NiO nanoparticle photocathodes, Chem. Commun. 47 (2011) 10419-10421.
-
[15] I. Barceló, E. Guillén, T. Lana-Villarreal, R. Gómez, Preparation and characterization of nickel oxide photocathodes sensitized with colloidal cadmium selenide quantum dots, J. Phys. Chem. C 117 (2013) 22509-22517.[15] I. Barceló, E. Guillén, T. Lana-Villarreal, R. Gómez, Preparation and characterization of nickel oxide photocathodes sensitized with colloidal cadmium selenide quantum dots, J. Phys. Chem. C 117 (2013) 22509-22517.
-
[16] P. Du, J. Schneider, G. Luo, W.W. Brennessel, R. Eisenberg, Visible light-driven hydrogen production from aqueous protons catalyzed by molecular cobaloxime catalysts, Inorg. Chem. 48 (2009) 4952-4962.[16] P. Du, J. Schneider, G. Luo, W.W. Brennessel, R. Eisenberg, Visible light-driven hydrogen production from aqueous protons catalyzed by molecular cobaloxime catalysts, Inorg. Chem. 48 (2009) 4952-4962.
-
[17] A. Krawicz, D. Cedeno, G.F. Moore, Energetics and efficiency analysis of cobaloxime- modified semiconductor under simulated air mass 1.5 illumination, Phys. Chem. Chem. Phys. 16 (2014) 15818-15824.[17] A. Krawicz, D. Cedeno, G.F. Moore, Energetics and efficiency analysis of cobaloxime- modified semiconductor under simulated air mass 1.5 illumination, Phys. Chem. Chem. Phys. 16 (2014) 15818-15824.
-
[18] S. Powar, Q. Wu, M. Weidelener, et al., Improved photocurrents for p-type dyesensitized solar cells using nano-structured nickel(Ⅱ) oxide microballs, Energy Environ. Sci. 5 (2012) 8896-8900.[18] S. Powar, Q. Wu, M. Weidelener, et al., Improved photocurrents for p-type dyesensitized solar cells using nano-structured nickel(Ⅱ) oxide microballs, Energy Environ. Sci. 5 (2012) 8896-8900.
-
[19] S. Powar, T. Daeneke, M.T. Ma, et al., Highly efficient p-type dye-sensitized solar cells based on tris(1,2-diaminoethane)cobalt(Ⅱ)/(Ⅲ) electrolytes, Angew. Chem. Int. Ed. 52 (2013) 602-605.[19] S. Powar, T. Daeneke, M.T. Ma, et al., Highly efficient p-type dye-sensitized solar cells based on tris(1,2-diaminoethane)cobalt(Ⅱ)/(Ⅲ) electrolytes, Angew. Chem. Int. Ed. 52 (2013) 602-605.
-
-
扫一扫看文章
计量
- PDF下载量: 0
- 文章访问数: 1168
- HTML全文浏览量: 33

下载: