Modulating ion current rectification generating high energy output in a single glass conical nanopore channel by concentration gradient
English
Modulating ion current rectification generating high energy output in a single glass conical nanopore channel by concentration gradient
-
-
-
[1] B. Kumar, S.W. Kim, Energy harvesting based on semiconducting piezoelectric ZnO nanostructures, Nano Energy 1 (2012) 342-355.[1] B. Kumar, S.W. Kim, Energy harvesting based on semiconducting piezoelectric ZnO nanostructures, Nano Energy 1 (2012) 342-355.
-
[2] C. Xu, C.F. Pan, Y. Liu, Z.L. Wang, Hybrid cells for simultaneously harvesting multi-type energies for self-powered micro/nanosystems, Nano Energy 1 (2012) 259-272.[2] C. Xu, C.F. Pan, Y. Liu, Z.L. Wang, Hybrid cells for simultaneously harvesting multi-type energies for self-powered micro/nanosystems, Nano Energy 1 (2012) 259-272.
-
[3] B.X. Xu, L. Liu, H. Lim, Y. Qiao, X. Chen, Harvesting energy from low-grade heat based on nanofluids, Nano Energy 1 (2012) 805-811.[3] B.X. Xu, L. Liu, H. Lim, Y. Qiao, X. Chen, Harvesting energy from low-grade heat based on nanofluids, Nano Energy 1 (2012) 805-811.
-
[4] W. Guo, L.X. Cao, J.C. Xia, et al., Energy harvesting with single-ion-selective nanopores: a concentration-gradient-driven nanofluidic power source, Adv. Funct. Mater. 20 (2010) 1339-1344.[4] W. Guo, L.X. Cao, J.C. Xia, et al., Energy harvesting with single-ion-selective nanopores: a concentration-gradient-driven nanofluidic power source, Adv. Funct. Mater. 20 (2010) 1339-1344.
-
[5] Z.S. Siwy, Ion-current rectification in nanopores and nanotubes with broken symmetry, Adv. Funct. Mater. 6 (2006) 735-746.[5] Z.S. Siwy, Ion-current rectification in nanopores and nanotubes with broken symmetry, Adv. Funct. Mater. 6 (2006) 735-746.
-
[6] Z. Siwy, E. Heins, C.C. Harrell, P. Kohli, C.R. Martin, Conical-nanotube ion-current rectifiers: the role of surface charge, J. Am. Chem. Soc. 35 (2004) 10850-10851.[6] Z. Siwy, E. Heins, C.C. Harrell, P. Kohli, C.R. Martin, Conical-nanotube ion-current rectifiers: the role of surface charge, J. Am. Chem. Soc. 35 (2004) 10850-10851.
-
[7] Z.S. Siwy, C.R. Martin, Tuning ion current rectification in synthetic nanotubes, Controlled Nanoscale Motion, vol. 711, Springer, Berlin, Heidelberg, 2007, pp. 349-365.[7] Z.S. Siwy, C.R. Martin, Tuning ion current rectification in synthetic nanotubes, Controlled Nanoscale Motion, vol. 711, Springer, Berlin, Heidelberg, 2007, pp. 349-365.
-
[8] M. Ali, B. Schiedt, K. Healy, R. Neumann,W. Ensinger, Modifying the surface charge of single track-etched conical nanopores in polyimide, Nanotechnology 8 (2008) 085713.[8] M. Ali, B. Schiedt, K. Healy, R. Neumann,W. Ensinger, Modifying the surface charge of single track-etched conical nanopores in polyimide, Nanotechnology 8 (2008) 085713.
-
[9] Z. Siwy, I.D. Kosińska, A. Fuliński, C.R. Martin, Asymmetric diffusion through synthetic nanopores, Phys. Rev. Lett. 4 (2005), 048102/1-048102/4.[9] Z. Siwy, I.D. Kosińska, A. Fuliński, C.R. Martin, Asymmetric diffusion through synthetic nanopores, Phys. Rev. Lett. 4 (2005), 048102/1-048102/4.
-
[10] R.Y. Chein, B.G. Chung, Numerical study of ionic current rectification through nonuniformly charged micro/nanochannel systems, J. Appl. Electrochem. 43 (2013) 1197-1206.[10] R.Y. Chein, B.G. Chung, Numerical study of ionic current rectification through nonuniformly charged micro/nanochannel systems, J. Appl. Electrochem. 43 (2013) 1197-1206.
-
[11] W. Guo, Y. Tian, L. Jiang, Asymmetric ion transport through ion-channel-mimetic solid-state nanopores, Acc. Chem. Res. 46 (2013) 2834-2846.[11] W. Guo, Y. Tian, L. Jiang, Asymmetric ion transport through ion-channel-mimetic solid-state nanopores, Acc. Chem. Res. 46 (2013) 2834-2846.
-
[12] I.D. Kosinska, A. Fulinski, Asymmetric nanodiffusion, Phys. Rev. E: Stat. Nonlin. Soft Matter Phys. 72 (1) (2005), 011201/1-011201/7.[12] I.D. Kosinska, A. Fulinski, Asymmetric nanodiffusion, Phys. Rev. E: Stat. Nonlin. Soft Matter Phys. 72 (1) (2005), 011201/1-011201/7.
-
[13] G.X. Li, X.Q. Lin, A glass nanopore electrode for single molecule detection, Chin. Chem. Lett. 21 (2010) 1115-1118.[13] G.X. Li, X.Q. Lin, A glass nanopore electrode for single molecule detection, Chin. Chem. Lett. 21 (2010) 1115-1118.
-
[14] B. Vilozny, A.L. Wollenberg, P. Acis, et al., Carbohydrate-actuated nanofluidic diode: switchable current rectification in a nanopipette, Nanoscale 5 (2013) 9214-9221.[14] B. Vilozny, A.L. Wollenberg, P. Acis, et al., Carbohydrate-actuated nanofluidic diode: switchable current rectification in a nanopipette, Nanoscale 5 (2013) 9214-9221.
-
[15] H.C. Zhang, X. Hou, L. Zeng, et al., Bio-inspired artificial single ion pump, J. Am. Chem. Soc. 43 (2013) 16102-16110.[15] H.C. Zhang, X. Hou, L. Zeng, et al., Bio-inspired artificial single ion pump, J. Am. Chem. Soc. 43 (2013) 16102-16110.
-
[16] M. Ali, S. Mafe, P. Ramirez, R. Neumann, W. Ensinger, Logic gates using nanofluidic diodes based on conical nanopores functionalized with polyprotic acid chains, Langmuir 25 (2009) 11993-11997.[16] M. Ali, S. Mafe, P. Ramirez, R. Neumann, W. Ensinger, Logic gates using nanofluidic diodes based on conical nanopores functionalized with polyprotic acid chains, Langmuir 25 (2009) 11993-11997.
-
[17] J. Cervera, P. Ramirez, S. Mafe, P. Stroeve, Asymmetric nanopore rectification for ion pumping, electrical power generation, and information processing applications, Electrochim. Acta 56 (2011) 4504-4511.[17] J. Cervera, P. Ramirez, S. Mafe, P. Stroeve, Asymmetric nanopore rectification for ion pumping, electrical power generation, and information processing applications, Electrochim. Acta 56 (2011) 4504-4511.
-
[18] L.X. Zhang, X.H. Cao, Y.B. Zheng, Y.Q. Li, Covalent modification of single glass conical nanopore channel with 6-carboxymethyl-chitosan for pH modulated ion current rectification, Electrochem. Commun. (2010) 1249-1252.[18] L.X. Zhang, X.H. Cao, Y.B. Zheng, Y.Q. Li, Covalent modification of single glass conical nanopore channel with 6-carboxymethyl-chitosan for pH modulated ion current rectification, Electrochem. Commun. (2010) 1249-1252.
-
[19] L.X. Zhang, S.L. Cai, Y.B. Zheng, X.H. Cao, Y.Q. Li, Smart homopolymer poly (2- (dimethylamino) ethyl methacrylate) modification to single glass conical nanopore channels: proton and thermo dual-stimuli actuated highly efficient iongating, Adv. Funct. Mater. 11 (2011) 2103-2107.[19] L.X. Zhang, S.L. Cai, Y.B. Zheng, X.H. Cao, Y.Q. Li, Smart homopolymer poly (2- (dimethylamino) ethyl methacrylate) modification to single glass conical nanopore channels: proton and thermo dual-stimuli actuated highly efficient iongating, Adv. Funct. Mater. 11 (2011) 2103-2107.
-
[20] Y.Q. Li, Y.B. Zheng, R.N. Zare, Electrical, optical, and docking properties of conical nanopores, ACS Nano 6 (2012) 993-997.[20] Y.Q. Li, Y.B. Zheng, R.N. Zare, Electrical, optical, and docking properties of conical nanopores, ACS Nano 6 (2012) 993-997.
-
[21] B. Zhang, J. Galusha, P.G. Shiozawa, et al., Bench-top method for fabricating glasssealed nanodisk electrodes, glass nanopore electrodes, and glass nanopore membranes of controlled size, Anal. Chem. 13 (2007) 4778-4787.[21] B. Zhang, J. Galusha, P.G. Shiozawa, et al., Bench-top method for fabricating glasssealed nanodisk electrodes, glass nanopore electrodes, and glass nanopore membranes of controlled size, Anal. Chem. 13 (2007) 4778-4787.
-
[22] X.H. Cao, L.X. Zhang, W.P. Cai, Y.Q. Li, Amperometric sensing of dopamine using a single-walled carbon nanotube covalently attached to a conical glass micropore electrode, Electrochem. Commun. 12 (2010) 540-543.[22] X.H. Cao, L.X. Zhang, W.P. Cai, Y.Q. Li, Amperometric sensing of dopamine using a single-walled carbon nanotube covalently attached to a conical glass micropore electrode, Electrochem. Commun. 12 (2010) 540-543.
-
[23] L.X. Zhang, X.H. Cao, W.P. Cai, Y.Q. Li, Observations of the effect of confined space on fluorescence and diffusion properties of molecules in single conical nanopore channels, J. Fluoresc. 5 (2011) 1865-1870.[23] L.X. Zhang, X.H. Cao, W.P. Cai, Y.Q. Li, Observations of the effect of confined space on fluorescence and diffusion properties of molecules in single conical nanopore channels, J. Fluoresc. 5 (2011) 1865-1870.
-
[24] B. Zhang, Y.H. Zhang, H.S. White, Steady-state voltammetric response of the nanopore electrode, Anal. Chem. 2 (2006) 477-483.[24] B. Zhang, Y.H. Zhang, H.S. White, Steady-state voltammetric response of the nanopore electrode, Anal. Chem. 2 (2006) 477-483.
-
[25] C. Wei, A.J. Bard, S.W. Feldberg, Current rectification at quartz nanopipette electrodes, Anal. Chem. 22 (1997) 4627-4633.[25] C. Wei, A.J. Bard, S.W. Feldberg, Current rectification at quartz nanopipette electrodes, Anal. Chem. 22 (1997) 4627-4633.
-
-
扫一扫看文章
计量
- PDF下载量: 0
- 文章访问数: 1114
- HTML全文浏览量: 10

下载: