Citation: LIU Han-lin, LI Xiu-ping, ZHAO Rong-xiang. Preparation of DESs/SG catalyst and its performance in the oxidative desulfurization[J]. Journal of Fuel Chemistry and Technology, ;2020, 48(3): 369-377. shu

Preparation of DESs/SG catalyst and its performance in the oxidative desulfurization

  • Corresponding author: ZHAO Rong-xiang, zylhzrx@126.com
  • Received Date: 21 October 2019
    Revised Date: 21 January 2020

    Fund Project: The project was supported by the Mentoring Program Projects from Liaoning Natural Science Foundation (2019-ZD-0064)The project was supported by the Mentoring Program Projects from Liaoning Natural Science Foundation 2019-ZD-0064

Figures(13)

  • DESs/SG catalyst was prepared by supporting the proline-based deep eutectic solvent (DES) on the silica-gel (SG) matrix using a sol-gel method; the catalyst structure was characterized by FT-IR, XRD, SEM/EDS and N2 adsorption-desorption. The results showed that the DESs were successfully incorporated into the silica-gel matrix, leading to a decrease in the surface area and pore volume, but an increase in the pore diameter. With hydrogen peroxide as oxidant, the catalytic performance of DESs/SG in the oxidative desulfurization of a model oil containing dibenzothiophene (DBT) was investigated; the effects of deep eutectic solvent loading, reaction temperature, n(H2O2)/n(S) ratio, catalyst amount, sulfur compound type and catalyst recycle times on the desulfurization efficiency were considered. The results indicated that under optimum desulfurization conditions, the desulfurization degrees for DBT, 4, 6-dimethyl-dibenzothiophene (4, 6-DMDBT) and benzothiophene (BT) over the DESs/SG catalyst were 97%, 96.5% and 46.4%, respectively; after recycling for 9 times, the DESs/SG catalyst still displayed a desulfurization degree of above 89.4%.
  • 加载中
    1. [1]

      MA X, ZHOU A, SONG C. A novel method for oxidative desulfurization of liquid hydrocarbon fuels based on catalytic oxidation using molecular oxygen coupled with selective adsorption[J]. Catal Today, 2007,123(1/4):276-284.  

    2. [2]

      LI Xu-he, FANG Lei, YANG Hao, ZHANG Jian, LIANG Fei-xue, WANG Hai-yan, WANG Yan-juan. Preparation of g-C3N4 supported phosphotungstate hybrid materials and their catalytic performance in the oxidative desulfurization[J]. J Fuel Chem Technol, 2019,47(2):174-182.  

    3. [3]

      YU M, LI Z, JI Q, WANG S, SU D, LIN Y S. Effect of thermal oxidation of activated carbon surface on its adsorption towards dibenzothiophene[J]. Chem Eng J, 2009,148(2/3):242-247.  

    4. [4]

      LIU W, LI T, YU G, WANG J, ZHOU Z. One-pot oxidative desulfurization of fuels using dual-acidic deep eutectic solvents[J]. Fuel, 2020,265:116967-116981.  

    5. [5]

      YANG Y, LV G, DENG L, LU B, LI J, ZHANG J, SHI J Y, DU S J. Ultra-deep desulfurization of diesel fuel via selective adsorption over modified activated carbon assisted by pre-oxidation[J]. J Cleaner Prod, 2017,161:422-430.  

    6. [6]

      SAFA M, MOKHTARANI B, MORTAHEB H R. Deep extractive desulfurization of dibenzothiophene with imidazolium or pyridinium-based ionic liquids[J]. Chem Eng Res Des, 2016,111:323-331.  

    7. [7]

      JIANG B, YANG H, ZHANG L, ZHANG Y Y, SUN Y L, HUANG Y. Efficient oxidative desulfurization of diesel fuel using amide-based ionic liquids[J]. Chem Eng J, 2016,283:89-96.  

    8. [8]

      JIANG W, ZHU W, LI H, WANG X, YIN S, CHANG Y H, LI H M. Temperature-responsive ionic liquid extraction and separation of the aromatic sulfur compounds[J]. Fuel, 2015,140:590-596.  

    9. [9]

      YIN J, WANG J, LI Z, LI D, YANG G, CUI Y N, WANG A L, LI C P. Deep desulfurization of fuels based on an oxidation/extraction process with acidic deep eutectic solvents[J]. Green Chem, 2015,17(9):4552-4559.  

    10. [10]

      ALI E, HADJ-KALI M K, MULYONO S, ALNASHEF I, FAKEEHA A, MJALLI F, HAYYAN A. Solubility of CO2 in deep eutectic solvents:Experiments and modelling using the Peng-Robinson equation of state[J]. Chem Eng Res Des, 2014,92(10):1898-1906.  

    11. [11]

      LIU P, HAO J W, MO L P, ZHANG Z H. Recent advances in the application of deep eutectic solvents as sustainable media as well as catalysts in organic reactions[J]. RSC Adv, 2015,5(60):48675-48704.  

    12. [12]

      NKUKU C A, LESUER R J. Electrochemistry in deep eutectic solvents[J]. J Phys Chem B, 2007,111(46):13271-13277.  

    13. [13]

      SMEETS S, LIU L, DONG J, MCCUSKER L B. Cheminform abstract:Ionothermal synthesis and structure of a new layered zirconium phosphate[J]. Inorg Chem, 2015,46(42):7953-7958.  

    14. [14]

      TANG Xiao-dong, ZHANG Xiao-pu, LI Jing-jing, WANG Zhi-yu, YANG Liu, WANG Chun. Research progress of deep eutectic solvents in desulfurization of vehicle fuel[J]. Chem Ind Eng Prog, 2018,37(11):82-89.  

    15. [15]

      LÜ H, LI P, DENG C, REN W Z, WANG S N, LIU P, ZHANG H. Deep catalytic oxidative desulfurization (ODS) of dibenzothiophene (DBT) with oxalate-based deep eutectic solvents (DESs)[J]. Chem Commun, 2015,51(53):10703-10706.  

    16. [16]

      LÜ H, LI P, LIU Y, HAO L W, REN W Z, ZHU W J, DENG C L, YANG P. Synthesis of a hybrid Anderson-type polyoxometalate in deep eutectic solvents (DESs) for deep desulphurization of model diesel in ionic liquids (ILs)[J]. Chem Eng J, 2017,313:1004-1009.  

    17. [17]

      ZHANG Q, KARINE D O V, ROYER S, JEROME F. Deep eutectic solvents:Syntheses, properties and applications[J]. Chem Soc Rev, 2012,41(21):7108-7146.  

    18. [18]

      GARCÍA-GUTIÉRREZ J L, FUENTES G A, HERNÁNDEZ-TERÁN M E, MURRIETA F, NAVARRETE J, JIMÉNEZ-CRUZ F. Ultra-deep oxidative desulfurization of diesel fuel with H2O2 catalyzed under mild conditions by polymolybdates supported on Al2O3[J]. Appl Catal A:Gen, 2006,305(1):15-20.  

    19. [19]

      YANG C, ZHAO K, CHENG Y, ZENG G M, ZHANG M M, SHAO J J, LU L. Catalytic oxidative desulfurization of BT and DBT from n-octane using cyclohexanone peroxide and catalyst of molybdenum supported on 4A molecular sieve[J]. Sep Purif Technol, 2016,163:153-161.  

    20. [20]

      LI S, MOMINOU N, WANG Z, WANG L. Ultra-deep desulfurization of gasoline with CuW/TiO2-go through photocatalytic oxidation[J]. Energy Fuels, 2016,30(2):962-967.  

    21. [21]

      YAN Xue-ming, SU Gao-shen, XIONG Lin. Oxidative desulfurization of diesel oil over Ag-modified mesoporous HPW/SiO2 catalyst[J]. J Fuel Chem Technol, 2009,37(3):318-323.  

    22. [22]

      SELVAM T, MACHOKE A, SCHWIEGER W. Supported ionic liquids on non-porous and porous inorganic materials-A topical review[J]. Appl Catal A:Gen, 2012,445:92-101.  

    23. [23]

      AZIZI N, EDRISI M, ABBASI F. Mesoporous silica SBA-15 functionalized with acidic deep eutectic solvent:A highly active heterogeneous N-formylation catalyst under solvent-free conditions[J]. Appl Organomet Chem, 2018,32(1):3901-3910.  

    24. [24]

      AZIZI N, EDRISI M. Deep eutectic solvent immobilized on SBA-15 as a novel separable catalyst for one-pot three-component Mannich reaction[J]. Microporous Mesoporous Mater, 2017,240:130-136.  

    25. [25]

      HAO L, WANG M, SHAN W, DENG C L, REN W Z, SHI Z Z, LÜ H Y. L-proline-based deep eutectic solvents (DESs) for deep catalytic oxidative desulfurization (ODS) of diesel[J]. J Hazard Mater, 2017,339:216-222.  

    26. [26]

      ZHAO R, LI X, SU J, GAO X H. Preparation of WO3/g-C3N4 composites and their application in oxidative desulfurization[J]. Appl Surf Sci, 2016,392:810-816.  

    27. [27]

      PIRZADA T, SHAH S S. Water-resistant poly (vinyl alcohol)-silica hybrids through sol-gel processing[J]. Chem Eng Technol, 2014,37(4):620-626.  

    28. [28]

      MATOS M C, ILHARCO L M, ALMEIDA R M. The evolution of TEOS to silica gel and glass by vibrational spectroscopy[J]. J Non-Cryst Solids, 1992,147:232-237.  

    29. [29]

      WU Y, LI Z, XIA C. Silica-gel-supported dual acidic ionic liquids as efficient catalysts for the synthesis of polyoxymethylene dimethyl ethers[J]. Ind Eng Chem Res, 2016,55(7):1859-1865.  

    30. [30]

      AZIZI N, EDRISI M, ABBASI F. Mesoporous silica SBA-15 functionalized with acidic deep eutectic solvent:A highly active heterogeneous N-formylation catalyst under solvent-free conditions[J]. Appl Organomet Chem, 2018,32(1):3901-3910.  

    31. [31]

      SAFA M, MOKHTARANI B, MORTAHEB H R, HEIDAR K T, SHARIFI A, MIRZAEI M. Oxidative desulfurization of diesel fuel using a Brønsted acidic ionic liquid supported on silica gel[J]. Energy Fuels, 2017,31(9):10196-10205.

    32. [32]

      WEI J, ZHU W, LI H, WANG X, YIN S, CHANGY H, LI H M. Temperature-responsive ionic liquid extraction and separation of the aromatic sulfur compounds[J]. Fuel, 2015,140:590-596.  

    33. [33]

      YANG W X, GUO G, MEI Z, YU Y H. Deep oxidative desulfurization of model fuels catalysed by immobilized ionic liquid on MIL-100(Fe)[J]. RSC Adv, 2019,9(38):21804-21809.  

    34. [34]

      YANG C, ZHAO K, CHENG Y, ZENG G M, ZHANG M M, SHAO J J. Catalytic oxidative desulfurization of BT and DBT from n-octane using cyclohexanone peroxide and catalyst of molybdenum supported on 4A molecular sieve[J]. Sep Purif Technol, 2016,163:153-161.  

    35. [35]

      YU Feng-li, WANG Rui. Study on oxidative desulfurization catalyzed by organic-inorganic heteropoiyacids as phase transfer catalyst[J]. Acta Chim Sin, 2014,72(1):105-113.  

    36. [36]

      MAO C, ZHAO R, LI X. Phenylpropanoic acid-based DESs as efficient extractants and catalysts for the removal of sulfur compounds from oil[J]. Fuel, 2017,189:400-407.  

    37. [37]

      SHI C, WANG W, LIU N, XUEYAN XU, WANG D H, ZHANG M H, SUN P C, CHEN T H. Low temperature oxidative desulfurization with hierarchically mesoporous titaniumsilicate Ti-SBA-2 single crystals[J]. Chem Commun, 2015,51(57):11500-11503.  

    38. [38]

      VIDAL L, RIEKKOLA M L, CANALS A. Ionic liquid-modified materials for solid-phase extraction and separation:A review[J]. Anal Chim Acta, 2012,715:0-41.  

    39. [39]

      ZHANG B Y, JIANG Z X, LI J, ZHANG Y, LIN F, LIU Y, LI C. Catalytic oxidation of thiophene and its derivatives via dual activation for ultra-deep desulfurization of fuels[J]. J Catal, 2012,287(3):5-12.  

    40. [40]

      WANG S, LI P, HAO L, DENG C L, REN W Z, LÜ H Y. Oxidative desulfurization of model diesel using a fenton-like catalyst in the ionic liquid[Dmim]BF4[J]. Chem Eng Technol, 2017, 40(3): 555-560.

    41. [41]

      MAGGI R, PISCOPO C G, SARTORI G, STORAROB L, MORETTI E. Supported sulfonic acids:Metal-free catalysts for the oxidation of hydroquinones to benzoquinones with hydrogen peroxide[J]. Appl Catal A:Gen, 2012,411(2):146-152.  

    42. [42]

      LI N, YUAN G, ZHANG X, YU Z J, SHI L, SUN Q. Oxidation of styrene to benzaldehyde by p-toluenesulfonic acid using hydrogen peroxide in the presence of activated carbon[J]. Chin J Catal, 2015,36(5):721-727.  

  • 加载中
    1. [1]

      Guodong Xu Chengcai Sheng Xiaomeng Zhao Tuojiang Zhang Zongtang Liu Jun Dong . Reform of Comprehensive Organic Chemistry Experiments in the Context of Emerging Engineering Education: A Case Study on the Improved Preparation of Benzocaine. University Chemistry, 2024, 39(11): 286-295. doi: 10.12461/PKU.DXHX202403094

    2. [2]

      Jichao XUMing HUXichang CHENChunhui WANGLeichen WANGLingyi ZHOUXing HEXiamin CHENGSu JING . Construction and hydrogen peroxide-activated chemodynamic activity of ferrocene?benzoselenadiazole conjugate. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1495-1504. doi: 10.11862/CJIC.20250144

    3. [3]

      Caixia Lin Zhaojiang Shi Yi Yu Jianfeng Yan Keyin Ye Yaofeng Yuan . Ideological and Political Design for the Electrochemical Synthesis of Benzoxathiazine Dioxide Experiment. University Chemistry, 2024, 39(2): 61-66. doi: 10.3866/PKU.DXHX202309005

    4. [4]

      Yanglin JiangMingqing ChenMin LiangYige YaoYan ZhangPeng WangJianping Zhang . Experimental and Theoretical Investigations of Solvent Polarity Effect on ESIPT Mechanism in 4′-N,N-diethylamino-3-hydroxybenzoflavone. Acta Physico-Chimica Sinica, 2025, 41(2): 2309027-0. doi: 10.3866/PKU.WHXB202309027

    5. [5]

      Jiaxin SuJiaqi ZhangShuming ChaiYankun WangSibo WangYuanxing Fang . Optimizing Poly(heptazine imide) Photoanodes Using Binary Molten Salt Synthesis for Water Oxidation Reaction. Acta Physico-Chimica Sinica, 2024, 40(12): 2408012-0. doi: 10.3866/PKU.WHXB202408012

    6. [6]

      Jingyu Cai Xiaoyu Miao Yulai Zhao Longqiang Xiao . Exploratory Teaching Experiment Design of FeOOH-RGO Aerogel for Photocatalytic Benzene to Phenol. University Chemistry, 2024, 39(4): 169-177. doi: 10.3866/PKU.DXHX202311028

    7. [7]

      Yuena Yang Xufang Hu Yushan Liu Yaya Kuang Jian Ling Qiue Cao Chuanhua Zhou . The Realm of Smart Hydrogels. University Chemistry, 2024, 39(5): 172-183. doi: 10.3866/PKU.DXHX202310125

    8. [8]

      Liangzhen Hu Li Ni Ziyi Liu Xiaohui Zhang Bo Qin Yan Xiong . A Green Chemistry Experiment on Electrochemical Synthesis of Benzophenone. University Chemistry, 2024, 39(6): 350-356. doi: 10.3866/PKU.DXHX202312001

    9. [9]

      Yufan ZHAOJinglin YOUShixiang WANGGuopeng LIUXiang XIAYingfang XIEMeiqin SHENGFeiyan XUKai TANGLiming LU . Raman spectroscopic quantitative study of the melt microstructure in binary Li2O-GeO2 functional crystals. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1533-1544. doi: 10.11862/CJIC.20250063

    10. [10]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    11. [11]

      Qiang ZhangYuanbiao HuangRong Cao . Imidazolium-Based Materials for CO2 Electroreduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2306040-0. doi: 10.3866/PKU.WHXB202306040

    12. [12]

      Yanhui GuoLi WeiZhonglin WenChaorong QiHuanfeng Jiang . Recent Progress on Conversion of Carbon Dioxide into Carbamates. Acta Physico-Chimica Sinica, 2024, 40(4): 2307004-0. doi: 10.3866/PKU.WHXB202307004

    13. [13]

      Zhaoyu WenNa HanYanguang Li . Recent Progress towards the Production of H2O2 by Electrochemical Two-Electron Oxygen Reduction Reaction. Acta Physico-Chimica Sinica, 2024, 40(2): 2304001-0. doi: 10.3866/PKU.WHXB202304001

    14. [14]

      Zhiquan ZhangBaker RhimiZheyang LiuMin ZhouGuowei DengWei WeiLiang MaoHuaming LiZhifeng Jiang . Insights into the Development of Copper-Based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-0. doi: 10.3866/PKU.WHXB202406029

    15. [15]

      Hailang JIAPengcheng JIHongcheng LI . Preparation and performance of nickel doped ruthenium dioxide electrocatalyst for oxygen evolution. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1632-1640. doi: 10.11862/CJIC.20240398

    16. [16]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    17. [17]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    18. [18]

      Jianan HongChenyu XuYan LiuChangqi LiMenglin WangYanwei Zhang . Decoding the interfacial competition between hydrogen evolution and CO2 reduction via edge-active-site modulation in photothermal catalysis. Acta Physico-Chimica Sinica, 2025, 41(9): 100099-0. doi: 10.1016/j.actphy.2025.100099

    19. [19]

      Bizhu ShaoHuijun DongYunnan GongJianhua MeiFengshi CaiJinbiao LiuDichang ZhongTongbu Lu . Metal-Organic Framework-Derived Nickel Nanoparticles for Efficient CO2 Electroreduction in Wide Potential Windows. Acta Physico-Chimica Sinica, 2024, 40(4): 2305026-0. doi: 10.3866/PKU.WHXB202305026

    20. [20]

      Yan KongWei WeiLekai XuChen Chen . Electrochemical Synthesis of Organonitrogen Compounds from N-integrated CO2 Reduction Reaction. Acta Physico-Chimica Sinica, 2024, 40(8): 2307049-0. doi: 10.3866/PKU.WHXB202307049

Metrics
  • PDF Downloads(9)
  • Abstract views(1454)
  • HTML views(279)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return