Citation: LI Yang, LIU Qing-ya, ZHAO Xiao-sheng, TANG Rui-xiang, LU Zheng-hua, SHI Lei. Effect of pyrite removal by chromous chloride on organic matter structure in Huadian oil shale[J]. Journal of Fuel Chemistry and Technology, ;2019, 47(2): 144-152. shu

Effect of pyrite removal by chromous chloride on organic matter structure in Huadian oil shale

  • Corresponding author: ZHAO Xiao-sheng, zhaoxs811@163.com
  • Received Date: 29 October 2018
    Revised Date: 16 December 2018

    Fund Project: The project was supported by the National Basic Research Program of China (973 program, 2014CB744301)the National Basic Research Program of China 973 programthe National Basic Research Program of China 2014CB744301

Figures(5)

  • Influence of pyrite removal by chromous chloride (CrCl2) on structure of organic matter in Huadian oil shale was examined using ultimate analysis, 13C NMR, XPS and TG-MS technology. The results show that CrCl2 treatment leads to 96.19% removal of pyrite from oil shale. The relative contents of aliphatic, aromatic, and carboxyl/carbonyl carbons of organic matter remain about the same level after pyrite removal by CrCl2, so does the pyrolysis characteristic temperature, indicating the carbon skeleton of organic matter is less affected by CrCl2. However, the CrCl2 treatment can break C-O bond in organic matter and reduce content of C-O/C-OH and O=C-O, leading to about 0.98% and 12.54% loss for organic carbon and organic matter, respectively. In addition, carbon content of organic matter significantly increases, hydrogen content slightly increases, and oxygen content is markedly reduced after pyrite removal by CrCl2, resulting in a slight decrease of H/C but a marked decrease of O/C in organic matter. The mass loss of organic matter treated by CrCl2 increases during pyrolysis because aliphatic carbon content of unit mass of organic matter increases 5.28%. Besides, the residual chromium oxide may also promote decomposition of organic matter during pyrolysis.
  • 加载中
    1. [1]

      WANG Qing, SUN Bin, LIU Hong-peng, BAI Jing-ru, XIAO Guan-hua. Analysis of mineral behavior during pyrolysis of oil shale[J]. J Fuel Chem Technol, 2013,41(2):163-168. doi: 10.3969/j.issn.0253-2409.2013.02.007 

    2. [2]

      CHANG Zhi-bing, CHU Mo, ZHANG Chao, BAI Shu-xia, LIN Hao. Variation of chemical composition of thermal bitumen during Huadian oil shale pyrolysis[J]. J Fuel Chem Technol, 2016,44(11):1310-1317. doi: 10.3969/j.issn.0253-2409.2016.11.005 

    3. [3]

      ORENDT A M, PIMIENTA I S, BADU S R, SOLUM M S, PUGMIRE R J, FACELLI J C, WINANS R E. Three-dimensional structure of the Siskin Green River Oil Shale Kerogen Model:A comparison between calculated and observed properties[J]. Energy Fuels, 2013,27(2):702-710. doi: 10.1021/ef3017046

    4. [4]

      GUAN X H, LIU Y, WANG D, WANG Q, CHI M S, LIU S, LIU C G. Three-dimensional structure of a huadian oil shale kerogen model:An experimental and theoretical study[J]. Energy Fuels, 2015,29(7):4122-4136. doi: 10.1021/ef502759q

    5. [5]

      WANG Qing, XU Xiang-cheng, CHI Ming-shu, ZHANG Hong-xi, CUI Da, BAI Jing-ru. FT-IR study on composition of oil shale kerogen and its pyrolysis oil generation characteristics[J]. J Fuel Chem Technol, 2015,43(10):1158-1166. doi: 10.3969/j.issn.0253-2409.2015.10.002 

    6. [6]

      TONG J H, HAN X X, WANG S, JIANG X M. Evaluation of structural characteristics of Huadian oil shale kerogen using direct techniques (solid-state 13C NMR, XPS, FT-IR, and XRD)[J]. Energy Fuels, 2011,25(9):4006-4013. doi: 10.1021/ef200738p

    7. [7]

      WANG Q, HOU Y C, WU W Z, YU Z, REN S H, LIU Q Y, LIU Z Y. A study on the structure of Yilan oil shale kerogen based on its alkali-oxygen oxidation yields of benzene carboxylic acids, 13C NMR and XPS[J]. Fuel Process Technol, 2017,166:30-40. doi: 10.1016/j.fuproc.2017.05.024

    8. [8]

      CHANG Zhi-bing, CHU Mo, ZHANG Chao, BAI Shu-xia, LIN Hao, MA Liang-bo. Influence of inherent carbonates and silicates on pyrolytic products of Tailao oil shale[J]. J Chem Ind Eng (China), 2017,68(4):1582-1589.  

    9. [9]

      BALLICE L. Effect of demineralization on yield and composition of the volatile products evolved from temperature-programmed pyrolysis of Beypazari (Turkey) oil shale[J]. Fuel Process Technol, 2005,86(6):673-690. doi: 10.1016/j.fuproc.2004.07.003

    10. [10]

      ZHAO X S, ZHANG X L, LIU Z Y, LU Z H, LIU Q Y. Organic matter in Yilan oil shale:Characterization and pyrolysis with or without inorganic minerals[J]. Energy Fuels, 2017,31(4):3784-3792.  

    11. [11]

      YVRVM Y, DROR Y, LEVY M. Effect of acid dissolution on the mineral matrix and organic matter of Zefa Efe oil shale[J]. Fuel Process Technol, 1985,11(1):71-86.  

    12. [12]

      CHI Ming-shu, WANG Qing, LI Song-yang, LIU Qi, CHA Bo-yu. Influence of demineralization on minerals and organic structure in Huadian oil shale[J]. J Fuel Chem Technol, 2017,45(12):1424-1433. doi: 10.3969/j.issn.0253-2409.2017.12.003 

    13. [13]

      LARSEN J W, PAN C S, SHAWVER S. Effect of demineralization on the macromolecular structure of coals[J]. Energy Fuels, 1989,3(5):557-561. doi: 10.1021/ef00017a004

    14. [14]

      GAI R H, JIN L J, ZHANG J B, WANG J Y, HU H Q. Effect of inherent and additional pyrite on the pyrolysis behavior of oil shale[J]. J Anal Appl Pyrolysis, 2014,105:342-347.  

    15. [15]

      NEWTON R J, BOTTRELL S H, DEAN S P, HATFIELD D, RAISWELL R. An evaluation of the use of the chromous chloride reduction method for isotopic analyses of pyrite in rocks and sediment[J]. Chem Geol, 1995,125(3/4):317-320.  

    16. [16]

      CANFIELD D E, RAISWELL R, WESTRICH J T, REAVES C M, BERNER R A. The use of chromium reduction in the analysis of reduced inorganic sulfur in sediments and shales[J]. Chem Geol, 1986,54(1/2):149-155.  

    17. [17]

      ACHOLLA F V, ORR W L. Pyrite removal from kerogen without altering organic matter:The chromous chloride method[J]. Energy Fuels, 1993,7(3):406-410. doi: 10.1021/ef00039a012

    18. [18]

      GALUKHIN A, GERASIMOV A, NIKOLAEV I, NOSOV R, OSIN Y. Pyrolysis of Kerogen of Bazhenov Shale:Kinetics and influence of inherent pyrite[J]. Energy Fuels, 2017,31(7):6777-6781.

    19. [19]

      ZHOU Yang. Study on the structures of sequential extraction of Yi-lan oil-shale[D]. Heilongjiang: Heilongjiang University of Science and Technology, 2011. 

    20. [20]

      LIU Q, HOU Y C, WU W Z, WANG Q, REN S H, LIU Q Y. New insight into the chemical structures of Huadian kerogen with supercritical ethanolysis:Cleavage of weak bonds to small molecular compounds[J]. Fuel Process Technol, 2018,176:138-145. doi: 10.1016/j.fuproc.2018.03.029

    21. [21]

      BAI Jing-ru, WANG Qing, WEI Yan-zhen, GUAN Xiao-hui. Acid treatment de-ashing of Huadian oilshal[J]. J China Univ Pet (Nat Sci Ed), 2010,34(2):150-153. doi: 10.3969/j.issn.1673-5005.2010.02.030

    22. [22]

      CHANG Z B, CHU M, ZHANG C, BAI S X, LIN H, MA L B. Influence of inherent mineral matrix on the product yield and characterization from Huadian oil shale pyrolysis[J]. J Anal Appl Pyrolysis, 2018,130:269-276. doi: 10.1016/j.jaap.2017.12.022

    23. [23]

      VANDENBROUCKE M, LARGEAU C. Kerogen origin, evolution and structure[J]. Org Geochem, 2007,38(5):719-833.  

    24. [24]

      ZHANG Xiao-liang. Study on sturcture composition and thermal fracture behavior of oil shale organic matter[D]. Beijing: Beijing University of Chemical Technology, 2015. 

    25. [25]

      ABOULKAS A, EL HARFI K. Effects of acid treatments on Moroccan Tarfaya oil shale and pyrolysis of oil shale and their kerogen[J]. J Fuel Chem Technol, 2009,37(6):659-667. doi: 10.1016/S1872-5813(10)60013-8

    26. [26]

      LIU Jian-zhong, QI Qing-jie, ZHOU Jun-hu, CAO Xin-yu, CEN Ke-fa. Distribution of fluoride in the combustion products of coal[J]. Environ Sci, 2003,24(4):127-130. doi: 10.3321/j.issn:0250-3301.2003.04.025

    27. [27]

      JIANG Xu-guang, XU Xu, YAN Jian-hua, HE Jie, CHI Yong, CEN Ke-fa. Experimental study on the release characteristic of chlorine in coal combustion process[J]. J China Coal Soc, 2002,27(4):398-401. doi: 10.3321/j.issn:0253-9993.2002.04.014

    28. [28]

      GELINAS Y, BALDOCK J A, HEDGES J I. Demineralization of marine and freshwater sediments for CP/MAS 13C NMR analysis[J]. Org Geochem, 2001,32(5):677-693. doi: 10.1016/S0146-6380(01)00018-3

    29. [29]

      ZHAO X S, LIU Z Y, LU Z H, SHI L, LIU Q Y. A study on average molecular structure of eight oil shale organic matters and radical information during pyrolysis[J]. Fuel, 2018,219:399-405. doi: 10.1016/j.fuel.2018.01.046

    30. [30]

      HILLIER J L, FLETCHER T H, SOLUM M S, PUGMIRE R J. Characterization of macromolecular structure of pyrolysis products from a Colorado Green River oil shale[J]. Ind Eng Chem Res, 2013,52(44):15522-15532.  

    31. [31]

      KOSATEVA A, STEFANOVA M, MARINOV S, CZECH J, CARLEER R, YPERMAN J. Characterization of organic components in leachables from Bulgarian lignites by spectroscopy, chromatography and reductive pyrolysis[J]. Int J Coal Geol, 2017,183:100-109. doi: 10.1016/j.coal.2017.10.005

    32. [32]

      LI Q Y, HAN X X, LIU Q Q, JIANG X M. Thermal decomposition of Huadian oil shale. Part 1. Critical organic intermediates[J]. Fuel, 2014,121:109-116. doi: 10.1016/j.fuel.2013.12.046

    33. [33]

      SHI Jian, LI Shu-yuan, MA Yue. Electron paramagnetic resonance (EPR) properties of Estonia oil shale and its pyrolysates[J]. J Fuel Chem Technol, 2018,46(1):1-7. doi: 10.3969/j.issn.0253-2409.2018.01.001 

    34. [34]

      PAN L W, DAI F Q, HUANG J N, LIU S, LI G Q. Study of the effect of mineral matters on the thermal decomposition of Jimsar oil shale using TG-MS[J]. Thermochim Acta, 2016,627:31-38.  

    35. [35]

      TORRENTE M C, GALAN M A. Kinetics of the thermal decomposition of oil shale from Puertollano (Spain)[J]. Fuel, 2001,80(3):327-334. doi: 10.1016/S0016-2361(00)00101-0

  • 加载中
    1. [1]

      Peng ZHOUXiao CAIQingxiang MAXu LIU . Effects of Cu doping on the structure and optical properties of Au11(dppf)4Cl2 nanocluster. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1254-1260. doi: 10.11862/CJIC.20240047

    2. [2]

      Xiao SANGQi LIUJianping LANG . Synthesis, structure, and fluorescence properties of Zn(Ⅱ) coordination polymers containing tetra-alkenylpyridine ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2124-2132. doi: 10.11862/CJIC.20240158

    3. [3]

      Qiuyu Ming Huijun Jiang Zhihao Zhang . A Sightseeing Tour of Folic Acid Processing Plant. University Chemistry, 2024, 39(9): 11-15. doi: 10.12461/PKU.DXHX202404092

    4. [4]

      Zhiwen HUANGQi LIUJianping LANG . W/Cu/S cluster-based supramolecular macrocycles and their third-order nonlinear optical responses. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 79-87. doi: 10.11862/CJIC.20240184

    5. [5]

      Tianyun Chen Ruilin Xiao Xinsheng Gu Yunyi Shao Qiujun Lu . Synthesis, Crystal Structure, and Mechanoluminescence Properties of Lanthanide-Based Organometallic Complexes. University Chemistry, 2024, 39(5): 363-370. doi: 10.3866/PKU.DXHX202312017

    6. [6]

      Jingjing QINGFan HEZhihui LIUShuaipeng HOUYa LIUYifan JIANGMengting TANLifang HEFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two complexes of dimethylglyoxime organotin. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1301-1308. doi: 10.11862/CJIC.20240003

    7. [7]

      Maitri BhattacharjeeRekha Boruah SmritiR. N. Dutta PurkayasthaWaldemar ManiukiewiczShubhamoy ChowdhuryDebasish MaitiTamanna Akhtar . Synthesis, structural characterization, bio-activity, and density functional theory calculation on Cu(Ⅱ) complexes with hydrazone-based Schiff base ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1409-1422. doi: 10.11862/CJIC.20240007

    8. [8]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    9. [9]

      Yaofeng Yuan Keyin Ye Chunfa Xu Hong Yan Yuanming Li . Fostering an International Perspective in Postgraduate Student Teaching: A Case Study of the Organic Structure Analysis Course. University Chemistry, 2024, 39(6): 145-150. doi: 10.3866/PKU.DXHX202402024

    10. [10]

      Yi DINGPeiyu LIAOJianhua JIAMingliang TONG . Structure and photoluminescence modulation of silver(Ⅰ)-tetra(pyridin-4-yl)ethene metal-organic frameworks by substituted benzoates. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 141-148. doi: 10.11862/CJIC.20240393

    11. [11]

      Qianlang Wang Jijun Sun Qian Chen Quanqin Zhao Baojuan Xi . The Appeal of Organophosphorus Compounds: Clearing Their Name. University Chemistry, 2025, 40(4): 299-306. doi: 10.12461/PKU.DXHX202405205

    12. [12]

      Lewang Yuan Yaoyao Peng Zong-Jie Guan Yu Fang . 二维共价有机框架作为光催化剂在有机合成中的研究进展. Acta Physico-Chimica Sinica, 2025, 41(8): 100086-. doi: 10.1016/j.actphy.2025.100086

    13. [13]

      Liang MAHonghua ZHANGWeilu ZHENGAoqi YOUZhiyong OUYANGJunjiang CAO . Construction of highly ordered ZIF-8/Au nanocomposite structure arrays and application of surface-enhanced Raman spectroscopy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1743-1754. doi: 10.11862/CJIC.20240075

    14. [14]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    15. [15]

      Aiai WANGLu ZHAOYunfeng BAIFeng FENG . Research progress of bimetallic organic framework in tumor diagnosis and treatment. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1825-1839. doi: 10.11862/CJIC.20240225

    16. [16]

      Feng Sha Xinyan Wu Ping Hu Wenqing Zhang Xiaoyang Luan Yunfei Ma . Design of Course Ideology and Politics for the Comprehensive Organic Synthesis Experiment of Benzocaine. University Chemistry, 2024, 39(2): 110-115. doi: 10.3866/PKU.DXHX202307082

    17. [17]

      Xinyu Zhu Meili Pang . Application of Functional Group Addition Strategy in Organic Synthesis. University Chemistry, 2024, 39(3): 218-230. doi: 10.3866/PKU.DXHX202308106

    18. [18]

      Shicheng Yan . Experimental Teaching Design for the Integration of Scientific Research and Teaching: A Case Study on Organic Electrooxidation. University Chemistry, 2024, 39(11): 350-358. doi: 10.12461/PKU.DXHX202408036

    19. [19]

      Yong Wang Yingying Zhao Boshun Wan . Analysis of Organic Questions in the 37th Chinese Chemistry Olympiad (Preliminary). University Chemistry, 2024, 39(11): 406-416. doi: 10.12461/PKU.DXHX202403009

    20. [20]

      Ran HUOZhaohui ZHANGXi SULong CHEN . Research progress on multivariate two dimensional conjugated metal organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2063-2074. doi: 10.11862/CJIC.20240195

Metrics
  • PDF Downloads(8)
  • Abstract views(941)
  • HTML views(162)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return