Citation: YANG Jian-guo, HUANG Zhou, GENG Zi-wen, ZHAO Hong, YUAN Wei-zhong, CHEN Xi-jiong, TENG Wei-ming. Effects of different alkali-based materials on coal-fired flue gas dechlorination[J]. Journal of Fuel Chemistry and Technology, ;2018, 46(8): 934-939. shu

Effects of different alkali-based materials on coal-fired flue gas dechlorination

  • Corresponding author: ZHAO Hong, zhaohong@zju.edu.cn
  • Received Date: 25 April 2018
    Revised Date: 11 June 2018

    Fund Project: the Science and Technology Project of Zhejiang Provincial Energy Group ZNKJ-2016-030The project was supported by the Science and Technology Project of Zhejiang Provincial Energy Group (ZNKJ-2016-030)

Figures(5)

  • Three common alkali-based materials, NaOH, Na2CO3 and NaHCO3, were utilized to explore their dechlorination performance in a simulated coal-fired flue gas. The results show that the dechlorination efficiency increases along with the enhancement of alkaline intensity. As the Na/Cl molar ratio reaches 5.8, 7.1 and 8.7, respectively, the dechlorination efficiency of all the three alkalis (NaOH, Na2CO3 or NaHCO3) exceeds 70%. The SO2 of high concentration in flue gas has competitive effects on dechlorination. With the increase in SO2 concentration, the dechlorination efficiency drops linearly. The influence of SO2 concentration on the dechlorination efficiency is almost identical regardless of different alkali-based materials. For per 100 mg/m3 augment in SO2 concentration, the dechlorination efficiency decreases by about 1.4%. NaOH is determined to be the most valuable alkali-based material for industrial application considering the cost and solubility.
  • 加载中
    1. [1]

      LI Yu, ZHANG Qiao, WANG Qun. Application of evaporative crystallization process in the zero discharge of desulfurization waste water in thermal power plant[J]. Technol Water Treat, 2016,42(11):121-122.  

    2. [2]

      CINGOLANI D, EUSEBI A L, BATTISTONI P. Osmosis process for leachate treatment in industrial platform:Economic and performances evaluations to zero liquid discharge[J]. J Environ Manage, 2017,203:782-790. doi: 10.1016/j.jenvman.2016.05.012

    3. [3]

      MA S, CHAI J, CHEN G, YU W, ZHU S. Research on desulfurization waste-water evaporation:Present and future perspectives[J]. Renewable Sustainable Energy Rev, 2016,58:1143-1151. doi: 10.1016/j.rser.2015.12.252

    4. [4]

      WU Yi-wei. Study on the wastewater treatment in limestone-gypsum wet FGD process[J]. Electr Pow, 2006,39(4):75-78.  

    5. [5]

      YANG Jian-guo, GENG Zi-wen, YUAN Wei-zhong, CHEN Xi-jiong, TENG Wei-ming, LIU Chang, ZHAO Hong. The technology of coal-fired flue gas dechlorination for realizing zero-discharge of desulfurization wastewater and its influences on boiler[J]. Proc CSEE, 2018,38(9):2657-2664.  

    6. [6]

      LIU C, ZHAO H, YANG W Y, QIU K Z, YANG J G, GENG Z W, TENG W M, YUAN W Z, CHEN X J. Chemical kinetics simulation of semi-dry dechlorination in coal-fired flue gas[J]. J Zhejiang Univ-Sci A, 2018,2(19):148-157.

    7. [7]

      JIE Hai-wei, ZHANG Yu-feng, ZHANG Yan. Numerical simulation and experimental study of flue gas cleaning in waste incineration power plants[J]. Proc CSEE, 2008,28(5):17-22.  

    8. [8]

      ZANG Ren-de, ZHANG Li. Numerical simulation and experimental on deacidification of flue gas by co-combustion of MSW with coal[J]. J China Coal Soc, 2011,36(8):1385-1390.  

    9. [9]

      ZHANG C X, WANG Y X, YANG Z H, XU M H. Chlorine emission and dechlorination in co-firing coal and the residue from hydrochloric acid hydrolysis of discorea zingiberensis[J]. Fuel, 2006,85(14/15):2034-2040.

    10. [10]

      FRIGGE L, STROEHLE J, EPPLE B. Release of sulfur and chlorine gas species during coal combustion and pyrolysis in an entrained flow reactor[J]. Fuel, 2017,201:105-110. doi: 10.1016/j.fuel.2016.11.037

    11. [11]

      LI W, LU H L, CHEN H K, LI B Q. The volatilization behavior of chlorine in coal during its pyrolysis and CO2-gasification in a fluidized bed reactor[J]. Fuel, 2005,84(14/15):1874-1878.

    12. [12]

      TSUBOUCHI N, OHTSUKA S, NAKAZATO Y, OHTSUKA Y. Formation of hydrogen chloride during temperature-programmed pyrolysis of coals with different ranks[J]. Energy Fuels, 2005,19(2):554-560. doi: 10.1021/ef040077z

    13. [13]

      GUO S Q, YANG J L, LIU Z Y. The fate of fluorine and chlorine during thermal treatment of coals[J]. Environ Sci Technol, 2006,40(24):7886-7889. doi: 10.1021/es0604562

    14. [14]

      BIE R S, LI S Y, YANG L D. Reaction mechanism of CaO with HCl in incineration of wastewater in fluidized bed[J]. Chem Eng Sci, 2005,60(3):609-616. doi: 10.1016/j.ces.2004.08.022

    15. [15]

      SUN Z C, YU F C, LI F X, LI S G, FAN L S. Experimental study of HCl capture using CaO sorbents:Activation, deactivation, reactivation, and ionic transfer mechanism[J]. Ind Eng Chem Res, 2011,50(10):6034-6043. doi: 10.1021/ie102587s

    16. [16]

      VERDONE N, DE FILIPPIS P. Thermodynamic behaviour of sodium and calcium based sorbents in the emission control of waste incinerators[J]. Chemosphere, 2004,54(7):975-985. doi: 10.1016/j.chemosphere.2003.09.041

    17. [17]

      FELLOWS K T, PILAT M J. HCl sorption by dry NaHCO3 for incinerator emissions control[J]. J Air Waste Manage, 1990,40(6):887-893. doi: 10.1080/10473289.1990.10466734

    18. [18]

      LI Meng. A integrated technology of flue gas desulfurization and denitrification by sodium based materials[C]//Processings of new technology exchange seminar of ultra-low emissions in coal-fired plant. Jiaxing, Zhejiang, China: Chinese Society of Power Engineering, 2014: 38-45.

    19. [19]

      WANG Yong-gang, LI Zhen-hu, ZHANG Wen-sheng, CENG Dong, GUO Kai. Removal of sulfur dioxide from flue gas in rotating packed bed by dual-alkali method[J]. Petrochem Technol, 2009,38(8):893-896.

    20. [20]

      LEWIS W K, WHITMAN W G. Principles of gas absorption[J]. Ind Eng Chem, 1924,16:1215-1220. doi: 10.1021/ie50180a002

    21. [21]

      LIU Z S, WEY M Y, LIN C L. Reaction characteristics of Ca(OH)2, HCl and SO2 at low temperature in a spray dryer integrated with a fabric filter[J]. J Hazard Mater, 2002,95(3):291-304. doi: 10.1016/S0304-3894(02)00142-5

    22. [22]

      STEIN J, KIND M, SCHLUNDER E U. The influence of HCl on SO2 absorption in the spray dry scrubbing process[J]. Chem Eng J, 2002,86(1/2):17-23.  

    23. [23]

      HARTMAN M, SVOBODA K, POHORELY M, SYC M, SKOBLIA S, CHEN P C. Reaction of hydrogen chloride gas with sodium carbonate and its deep removal in a fixed-bed reactor[J]. Ind Eng Chem Res, 2014,53(49):19145-19158. doi: 10.1021/ie503480k

    24. [24]

      LIU Chang, ZHAO Hong, TENG Wei-ming, GENG Zi-wen, QIU Kun-zan, YANG Jian-guo, YUAN Wei-zhong, CHEN Xi-jiong. Effect of n(Na+)/n(C1-) on semi-dry dechlorination in coal-fired flue gas to realize zero emission of FGD waste water[J]. Coal Convers, 2017,40(3):70-75.

  • 加载中
    1. [1]

      Cuiwu MOGangmin ZHANGChao WUZhipeng HUANGChi ZHANG . A(NH2SO3) (A=Li, Na): Two ultraviolet transparent sulfamates exhibiting second harmonic generation response. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1387-1396. doi: 10.11862/CJIC.20240045

    2. [2]

      Ruofan YinZhaoxin GuoRui LiuXian-Sen Tao . Ultrafast synthesis of Na3V2(PO4)3 cathode for high performance sodium-ion batteries. Chinese Chemical Letters, 2025, 36(2): 109643-. doi: 10.1016/j.cclet.2024.109643

    3. [3]

      Gregorio F. Ortiz . Some facets of the Mg/Na3VCr0.5Fe0.5(PO4)3 battery. Chinese Chemical Letters, 2024, 35(10): 109391-. doi: 10.1016/j.cclet.2023.109391

    4. [4]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    5. [5]

      Xuejiao Wang Suiying Dong Kezhen Qi Vadim Popkov Xianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-. doi: 10.3866/PKU.WHXB202408005

    6. [6]

      Fei ZHOUXiaolin JIA . Co3O4/TiO2 composite photocatalyst: Preparation and synergistic degradation performance of toluene. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2232-2240. doi: 10.11862/CJIC.20240236

    7. [7]

      Liang Ma Zhou Li Zhiqiang Jiang Xiaofeng Wu Shixin Chang Sónia A. C. Carabineiro Kangle Lv . Effect of precursors on the structure and photocatalytic performance of g-C3N4 for NO oxidation and CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(11): 100416-100416. doi: 10.1016/j.cjsc.2024.100416

    8. [8]

      Maomao Liu Guizeng Liang Ningce Zhang Tao Li Lipeng Diao Ping Lu Xiaoliang Zhao Daohao Li Dongjiang Yang . Electron-rich Ni2+ in Ni3S2 boosting electrocatalytic CO2 reduction to formate and syngas. Chinese Journal of Structural Chemistry, 2024, 43(8): 100359-100359. doi: 10.1016/j.cjsc.2024.100359

    9. [9]

      Xiuzheng DengChanghai LiuXiaotong YanJingshan FanQian LiangZhongyu Li . Carbon dots anchored NiAl-LDH@In2O3 hierarchical nanotubes for promoting selective CO2 photoreduction into CH4. Chinese Chemical Letters, 2024, 35(6): 108942-. doi: 10.1016/j.cclet.2023.108942

    10. [10]

      Jing Wang Pingping Li Yuehui Wang Yifan Xiu Bingqian Zhang Shuwen Wang Hongtao Gao . Treatment and Discharge Evaluation of Phosphorus-Containing Wastewater. University Chemistry, 2024, 39(5): 52-62. doi: 10.3866/PKU.DXHX202309097

    11. [11]

      Shunshun JiangJi ZhangJing WangShan-Tao Zhang . Excellent energy storage properties in non-stoichiometric Bi0.5Na0.5TiO3-based relaxor ferroelectric ceramics. Chinese Chemical Letters, 2024, 35(7): 108955-. doi: 10.1016/j.cclet.2023.108955

    12. [12]

      Han ZHANGJianfeng SUNJinsheng LIANG . Hydrothermal synthesis and luminescent properties of broadband near-infrared Na3CrF6 phosphor. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 349-356. doi: 10.11862/CJIC.20240098

    13. [13]

      Yang LiYanan DongZhihong WeiChangzeng YanZhen LiLin HeYuehui Li . Fluoride-promoted Ni-catalyzed cyanation of C–O bond using CO2 and NH3. Chinese Chemical Letters, 2025, 36(5): 110206-. doi: 10.1016/j.cclet.2024.110206

    14. [14]

      Xiuzheng DengYi KeJiawen DingYingtang ZhouHui HuangQian LiangZhenhui Kang . Construction of ZnO@CDs@Co3O4 sandwich heterostructure with multi-interfacial electron-transfer toward enhanced photocatalytic CO2 reduction. Chinese Chemical Letters, 2024, 35(4): 109064-. doi: 10.1016/j.cclet.2023.109064

    15. [15]

      Xinpeng LIULiuyang ZHAOHongyi LIYatu CHENAimin WUAikui LIHao HUANG . Ga2O3 coated modification and electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1105-1113. doi: 10.11862/CJIC.20230488

    16. [16]

      Guanyang Zeng Xingqiang Liu Liangqiao Wu Zijie Meng Debin Zeng Changlin Yu . Novel visible-light-driven I- doped Bi2O2CO3 nano-sheets fabricated via an ion exchange route for dye and phenol removal. Chinese Journal of Structural Chemistry, 2024, 43(12): 100462-100462. doi: 10.1016/j.cjsc.2024.100462

    17. [17]

      Liuyun Chen Wenju Wang Tairong Lu Xuan Luo Xinling Xie Kelin Huang Shanli Qin Tongming Su Zuzeng Qin Hongbing Ji . Soft template-induced deep pore structure of Cu/Al2O3 for promoting plasma-catalyzed CO2 hydrogenation to DME. Acta Physico-Chimica Sinica, 2025, 41(6): 100054-. doi: 10.1016/j.actphy.2025.100054

    18. [18]

      Jianbao Mei Bei Li Shu Zhang Dongdong Xiao Pu Hu Geng Zhang . Enhanced Performance of Ternary NASICON-Type Na3.5-xMn0.5V1.5-xZrx(PO4)3/C Cathodes for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(12): 2407023-. doi: 10.3866/PKU.WHXB202407023

    19. [19]

      Mingjiao LuZhixing WangGui LuoHuajun GuoXinhai LiGuochun YanQihou LiXianglin LiDing WangJiexi Wang . Boosting the performance of LiNi0.90Co0.06Mn0.04O2 electrode by uniform Li3PO4 coating via atomic layer deposition. Chinese Chemical Letters, 2024, 35(5): 108638-. doi: 10.1016/j.cclet.2023.108638

    20. [20]

      Huyi Yu Renshu Huang Qian Liu Xingfa Chen Tianqi Yu Haiquan Wang Xincheng Liang Shibin Yin . Te-doped Fe3O4 flower enabling low overpotential cycling of Li-CO2 batteries at high current density. Chinese Journal of Structural Chemistry, 2024, 43(3): 100253-100253. doi: 10.1016/j.cjsc.2024.100253

Metrics
  • PDF Downloads(5)
  • Abstract views(507)
  • HTML views(55)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return