Citation: ZHOU Ze-ling, ZHANG Meng, ZHANG Jun-feng, SONG Fa-en, ZHANG Qing-de, TAN Yi-sheng, HAN Yi-zhuo. Methane reforming with carbon dioxide over the perovskite supported Ni catalysts[J]. Journal of Fuel Chemistry and Technology, ;2020, 48(7): 833-841. shu

Methane reforming with carbon dioxide over the perovskite supported Ni catalysts

  • Corresponding author: ZHANG Jun-feng, zhangjf@sxicc.ac.cn HAN Yi-zhuo, hanyz@sxicc.ac.cn
  • Received Date: 9 June 2020
    Revised Date: 9 July 2020

    Fund Project: The project was supported by the Special National Key Research and Development Project (2016YFF0102601)the Special National Key Research and Development Project 2016YFF0102601

Figures(7)

  • A series of MTiO3 (M=Mg, Ca, Sr, Ba) supported Ni catalysts (with a Ni loading of 5%) for methane reforming with carbon dioxide (DRM) were prepared by the impregnation method. The Ni/MTiO3 catalysts were characterized by XRD, N2 sorption, H2-TPR, CO2-TPD, XPS and TG; the effect of alkaline earth metals (M) on the catalytic performance of Ni/MTiO3 in the DRM was then investigated. The results indicate that the metal-support interaction, the surface Ni atomic concentration and the mobility of lattice oxygen species on the Ni/MTiO3 catalysts are related to the alkaline earth metal M used in the MTiO3 supports. The Ni/CaTiO3 catalyst shows superior performance in DRM to other catalysts, which is ascribed to the strong metal-support interaction, large amount of reduced active Ni and relatively high mobility of lattice oxygen species. In contrast, the SrTiO3 support has a relatively large particle size, leading to poor Ni dispersion on the Ni/SrTiO3 catalyst as well as weak metal-support interaction, low lattice oxygen mobility, and less surface active Ni atoms; as a result, the Ni/SrTiO3 catalyst exhibits relatively poor performance in DRM.
  • 加载中
    1. [1]

      NEJAT P, JOMEHZADEH F, TAHERI M M, GOHARI M, ABD MAJID M Z. A global review of energy consumption, CO2 emissions and policy in the residential sector (with an overview of the top ten CO2 emitting countries)[J]. Renewable Sustainable Energy Rev, 2015,43:843-862.  

    2. [2]

      WANG Hui, ZHANG Jun-feng, BAI Yun-xing, WANG Wen-feng, TAN Yi-sheng, HAN Yi-zhuo. NiO@SiO2 core-shell catalyst for low-temperature methanation of syngas in slurry reactor[J]. J Fuel Chem Technol, 2016,44(5):548-556.  

    3. [3]

      SHI Guang-qiang, LI Jun-hua, LIU Yu-hang, WU Ze-long. Research progress on indirect conversion of methane to produce synthesis gas[J]. Tianjin Chem Ind, 2015,29(4):1-3.  

    4. [4]

      ZHANG Xiao-ping. Preparation of mesoporous Ni/ZrO2 catalysts and catalytic performance for CO2 reforming of CH4[J]. Shandong Chem Ind, 2019,48(10):43-45.  

    5. [5]

      HERMAN R G, SUN Q, SHI C. Development of active oxide catalysts for the direct oxidation of methane to formaldehyde[J]. Catal Today, 1997,37(1):1-14.  

    6. [6]

      XU J, ZHANG Y, XU X, FANG X, XI R, LIU Y, ZHENG R, WANG X. Constructing La2B2O7 (B=Ti, Zr, Ce) compounds with three typical crystalline phases for oxidative coupling of methane:The effect of phase structures, super oxide anions and alkalinity on the reactivity[J]. ACS Catal, 2019,9(5):4030-4045.  

    7. [7]

      GUO X, FANG G, LI G, MA H, FAN H, YU L, MA C, WU X, DENG D, WEI M. Direct, nonoxidative conversion of methane to ethylene, aromatics, and hydrogen[J]. Science, 2014,344(2):616-619.  

    8. [8]

      ROSTRUP-NIELSEN J R. Sulfur-passivated nickel catalysts for carbon-free steam reforming of methane[J]. J Catal, 1984,85(1):31-43.  

    9. [9]

      XIAO Z, LI Y, HOU F, WU C, PAN L, ZOU J, WANG L, ZHANG X, LIU G, LI G. Engineering oxygen vacancies and nickel dispersion on CeO2 by Pr doping for highly stable ethanol steam reforming[J]. Appl Catal B:Environ, 2019,258117940.  

    10. [10]

      YANG J H, YOON Y, RYU M, AN S K, SHIN J, LEE C J. Integrated hydrogen liquefaction process with steam methane reforming by using liquefied natural gas cooling system[J]. Appl Energy, 2019,255113840.  

    11. [11]

      DI GIULIANO A, GALLUCCI K, GIANCATERINO F, COURSON C, FOSCOLO P U. Multicycle sorption enhanced steam methane reforming with different sorbent regeneration conditions:Experimental and modelling study[J]. Chem Eng J, 2019,377119874.  

    12. [12]

      MA Y, MA Y, LONG G, LI J, HU X, YE Z, WANG Z, BUCKLEY C E, DONG D, Synergistic promotion effect of MgO and CeO2 on nanofibrous Ni/Al2O3 catalysts for methane partial oxidation[J]. Fuel, 2019, 258: 116103. 

    13. [13]

      KIM S, CRANDALL B S, LANCE M J, CORDONNIER N, LAUTERBACH J, SASMAZ E. Activity and stability of NiCe@SiO2 multi-yolk-shell nanotube catalyst for tri-reforming of methane[J]. Appl Catal B:Environ, 2019,259118037.  

    14. [14]

      ZHANG X, ZHANG M, ZHANG J, ZHANG Q, TSUBAKI N, TAN Y, HAN Y. Methane decomposition and carbon deposition over Ni/ZrO2 catalysts:Comparison of amorphous, tetragonal, and monoclinic zirconia phase[J]. Int J Hydrogen Energy, 2019,44(33):17887-17899.  

    15. [15]

      ZHAO Y, KANG Y, LI H, LI H. CO2 conversion to synthesis gas via DRM on the durable Al2O3/Ni/Al2O3 sandwich catalyst with high activity and stability[J]. Green Chem, 2018,20(12):2781-2787.  

    16. [16]

      QIN Z, CHEN J, XIE X, LUO X, SU T, JI H. CO2 reforming of CH4 to syngas over nickel-based catalysts[J]. Environ Chem Lett, 2020,18(4):997-1017.  

    17. [17]

      ZHANG M, ZHANG J, WU Y, PAN J, ZHANG Q, TAN Y, HAN Y. Insight into the effects of the oxygen species over Ni/ZrO2 catalyst surface on methane reforming with carbon dioxide[J]. Appl Catal B:Environ, 2019,244:427-437.  

    18. [18]

      YENTEKAKIS I V, GOULA G, HATZISYMEON M, BETSI-ARGYROPOULOU I, BOTZOLAKI G, KOUSI K, KONDARIDES D I, TAYLOR M J, PARLETT C. M. A, OSATIASHTIANI A, KYRIAKOU G, HOLGADO J P, LAMBERT R M. Effect of support oxygen storage capacity on the catalytic performance of Rh nanoparticles for CO2 reforming of methane[J]. Appl Catal B:Environ, 2019,243:490-501.  

    19. [19]

      LIU C, YE J, JIANG J, PAN Y. Progresses in the preparation of coke resistant Ni-based catalyst for steam and CO2 reforming of methane[J]. Chem Cat Chem, 2011,3(3):529-541.  

    20. [20]

      ARBAG H, YASYERLI S, YASYERLI N, DOGU G. Activity and stability enhancement of Ni-MCM-41 catalysts by Rh incorporation for hydrogen from dry reforming of methane[J]. Int J Hydrogen Energy, 2010,35(6):2296-2304.  

    21. [21]

      HU Y H, RUCKENSTEIN E. Binary MgO-based solid solution catalysts for methane conversion to syngas[J]. Catal Rev, 2002,44(3):423-453.  

    22. [22]

      AZIZ M.A.A, JALIL A. A, WONGSAKULPHASATCH S, VO D V N. Understanding the role of surface basic sites of catalysts in CO2 activation in dry reforming of methane:A short review[J]. Catal Sci Technol, 2020,10(1):35-45.  

    23. [23]

      WANG S, LU G Q, MILLAR G J. Carbon Dioxide reforming of methane to produce synthesis gas over metal-supported catalysts:State of the art[J]. Energy Fuels, 1996,10(4):896-904.  

    24. [24]

      LI Z, WANG Z, JIANG B, KAWI S. Sintering resistant Ni nanoparticles exclusively confined within SiO2 nanotubes for CH4 dry reforming[J]. Catal Sci Technol, 2018,8(13):3363-3371.  

    25. [25]

      ZHANG M, ZHANG J, ZHOU Z, CHEN S, ZHANG T, SONG F, ZHANG Q, TSUBAKI N, TAN Y, HAN Y. Effects of the surface adsorbed oxygen species tuned by rare-earth metal doping on dry reforming of methane over Ni/ZrO2 catalyst[J]. Appl Catal B:Environ, 2020,264118522.  

    26. [26]

      YAN Q G, WENG W Z, WAN H L, TOGHIANI H, JR C U P. Activation of methane to syngas over a Ni/TiO2 catalyst[J]. Appl Catal A:Gen, 2003,239(1/2):43-58.  

    27. [27]

      AKRI M, ZHAO S, LI X, ZANG K, LEE A F, ISAACS M A, XI W, GANGARAJULA Y, LUO J, REN Y, CUI Y T, LI L, SU Y, PAN X, WEN W, PAN Y, WILSON K, LI L, QIAO B, ISHII H, LIAO Y F, WANG A, WANG X, ZHANG T. Atomically dispersed nickel as coke-resistant active sites for methane dry reforming[J]. Nat Commun, 2019,10(1)5181.  

    28. [28]

      HAYAKAWA T, SUZUKI S, NAKAMURA J, UCHIJIMA T, HAMAKAWA S, SUZUKI K, SHISHIDO T, TAKEHIRA K. CO2 reforming of CH4 over Ni/perovskite catalysts prepared by solid phase crystallization method[J]. Appl Catal A:Gen, 1999,183(2):273-285.  

    29. [29]

      LI X, WU M, LAI Z, HE F. Studies on nickel-based catalysts for carbon dioxide reforming of methane[J]. Appl Catal A:Gen, 2005,290(1/2):81-86.  

    30. [30]

      GAO N, CHENG M, QUAN C, ZHENG Y. Syngas production via combined dry and steam reforming of methane over Ni-Ce/ZSM-5 catalyst[J]. Fuel, 2020,273117702.  

    31. [31]

      WANG Y H, LIU H M, XU B Q. Durable Ni/MgO catalysts for CO2 reforming of methane:Activity and metal-support interaction[J]. J Mol Catal A:Chem, 2009,299(1):44-52.  

    32. [32]

      LÖFBERG A, GUERRERO-CABALLERO J, KANE T, RUBBENS A, JALOWIECKI-DUHAMEL L. Ni/CeO2 based catalysts as oxygen vectors for the chemical looping dry reforming of methane for syngas production[J]. Appl Catal B:Environ, 2017,212:159-174.  

    33. [33]

      SUTTHIUMPORN K, MANEERUNG T, KATHIRASER Y, KAWI S. CO2 dry-reforming of methane over La0.8Sr0.2Ni0.8M0.2O3 perovskite (M=Bi, Co, Cr, Cu, Fe):Roles of lattice oxygen on C-H activation and carbon suppression[J]. Int J Hydrogen Energy, 2012,37(15):11195-11207.

    34. [34]

      LI R J, YU C C, JI W J, SHEN S K. Methane oxidation to synthesis gas using lattice oxygen in La1-xSrxFeO3 perovskite oxides instead of molecular oxygen[J]. Stud Surf Sci Catal, 2004,147:199-204.  

    35. [35]

      AU C T, HU Y H, WAN H L. Methane activation over unsupported and La2O3-supported copper and nickel catalysts[J]. Catal Lett, 1996,36(3/4):159-163.  

    36. [36]

      LIU B S, AU C T. Carbon deposition and catalyst stability over La2NiO4/γ-Al2O3 during CO2 reforming of methane to syngas[J]. Appl Catal A Gen, 2003,244(1):181-195.  

  • 加载中
    1. [1]

      Yanhui GuoLi WeiZhonglin WenChaorong QiHuanfeng Jiang . Recent Progress on Conversion of Carbon Dioxide into Carbamates. Acta Physico-Chimica Sinica, 2024, 40(4): 2307004-0. doi: 10.3866/PKU.WHXB202307004

    2. [2]

      Xiaofei LiuHe WangLi TaoWeimin RenXiaobing LuWenzhen Zhang . Electrocarboxylation of Benzylic Phosphates and Phosphinates with Carbon Dioxide. Acta Physico-Chimica Sinica, 2024, 40(9): 2307008-0. doi: 10.3866/PKU.WHXB202307008

    3. [3]

      Yao MaXin ZhaoHongxu ChenWei WeiLiang Shen . Progress and Perspective of Perovskite Thin Single Crystal Photodetectors. Acta Physico-Chimica Sinica, 2025, 41(4): 2309045-0. doi: 10.3866/PKU.WHXB202309045

    4. [4]

      Yixuan Gao Lingxing Zan Wenlin Zhang Qingbo Wei . Comprehensive Innovation Experiment: Preparation and Characterization of Carbon-based Perovskite Solar Cells. University Chemistry, 2024, 39(4): 178-183. doi: 10.3866/PKU.DXHX202311091

    5. [5]

      Lin Song Dourong Wang Biao Zhang . Innovative Experimental Design and Research on Preparing Flexible Perovskite Fluorescent Gels Using 3D Printing. University Chemistry, 2024, 39(7): 337-344. doi: 10.3866/PKU.DXHX202310107

    6. [6]

      Cheng PENGJianwei WEIYating CHENNan HUHui ZENG . First principles investigation about interference effects of electronic and optical properties of inorganic and lead-free perovskite Cs3Bi2X9 (X=Cl, Br, I). Chinese Journal of Inorganic Chemistry, 2024, 40(3): 555-560. doi: 10.11862/CJIC.20230282

    7. [7]

      Feifei YangWei ZhouChaoran YangTianyu ZhangYanqiang Huang . Enhanced Methanol Selectivity in CO2 Hydrogenation by Decoration of K on MoS2 Catalyst. Acta Physico-Chimica Sinica, 2024, 40(7): 2308017-0. doi: 10.3866/PKU.WHXB202308017

    8. [8]

      Zixuan Zhao Miao Fan . “Carbon” with No “Ester”: A Boundless Journey of CO2 Transformation. University Chemistry, 2025, 40(7): 213-217. doi: 10.12461/PKU.DXHX202409040

    9. [9]

      Honghong ZhangZhen WeiDerek HaoLin JingYuxi LiuHongxing DaiWeiqin WeiJiguang Deng . 非均相催化CO2与烃类协同催化转化的最新进展. Acta Physico-Chimica Sinica, 2025, 41(7): 100073-0. doi: 10.1016/j.actphy.2025.100073

    10. [10]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    11. [11]

      Bizhu ShaoHuijun DongYunnan GongJianhua MeiFengshi CaiJinbiao LiuDichang ZhongTongbu Lu . Metal-Organic Framework-Derived Nickel Nanoparticles for Efficient CO2 Electroreduction in Wide Potential Windows. Acta Physico-Chimica Sinica, 2024, 40(4): 2305026-0. doi: 10.3866/PKU.WHXB202305026

    12. [12]

      Yueguang Chen Wenqiang Sun . “Carbon” Adventures. University Chemistry, 2024, 39(9): 248-253. doi: 10.3866/PKU.DXHX202308074

    13. [13]

      Hui-Ying ChenHao-Lin ZhuPei-Qin LiaoXiao-Ming Chen . Integration of Ru(Ⅱ)-Bipyridyl and Zinc(Ⅱ)-Porphyrin Moieties in a Metal-Organic Framework for Efficient Overall CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2306046-0. doi: 10.3866/PKU.WHXB202306046

    14. [14]

      Qiang ZhangYuanbiao HuangRong Cao . Imidazolium-Based Materials for CO2 Electroreduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2306040-0. doi: 10.3866/PKU.WHXB202306040

    15. [15]

      Zhiquan ZhangBaker RhimiZheyang LiuMin ZhouGuowei DengWei WeiLiang MaoHuaming LiZhifeng Jiang . Insights into the Development of Copper-Based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-0. doi: 10.3866/PKU.WHXB202406029

    16. [16]

      Jianan HongChenyu XuYan LiuChangqi LiMenglin WangYanwei Zhang . Decoding the interfacial competition between hydrogen evolution and CO2 reduction via edge-active-site modulation in photothermal catalysis. Acta Physico-Chimica Sinica, 2025, 41(9): 100099-0. doi: 10.1016/j.actphy.2025.100099

    17. [17]

      Yan KongWei WeiLekai XuChen Chen . Electrochemical Synthesis of Organonitrogen Compounds from N-integrated CO2 Reduction Reaction. Acta Physico-Chimica Sinica, 2024, 40(8): 2307049-0. doi: 10.3866/PKU.WHXB202307049

    18. [18]

      Jie ZHAOHuili ZHANGXiaoqing LUZhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213

    19. [19]

      Wei HEJing XITianpei HENa CHENQuan YUAN . Application of solar-driven inorganic semiconductor-microbe hybrids in carbon dioxide fixation and biomanufacturing. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 35-44. doi: 10.11862/CJIC.20240364

    20. [20]

      Fan JIAWenbao XUFangbin LIUHaihua ZHANGHongbing FU . Synthesis and electroluminescence properties of Mn2+ doped quasi-two-dimensional perovskites (PEA)2PbyMn1-yBr4. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1114-1122. doi: 10.11862/CJIC.20230473

Metrics
  • PDF Downloads(11)
  • Abstract views(1021)
  • HTML views(188)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return