Citation: LI Na, LI Yang, BAN Yan-peng, SONG Yin-min, ZHOU Hua-cong, ZHI Ke-duan, HE Run-xia, TENG Ying-yue, YANG Ke-li, LIU Quan-sheng. Analysis of active microstructure during steam gasification of Shengli char catalyzed by calcium component[J]. Journal of Fuel Chemistry and Technology, ;2016, 44(11): 1297-1303. shu

Analysis of active microstructure during steam gasification of Shengli char catalyzed by calcium component

  • Corresponding author: LIU Quan-sheng, liuqs@imut.edu.cn
  • Received Date: 31 May 2016
    Revised Date: 10 August 2016

    Fund Project: The project was supported by the National Natural Science Foundation of China 21606134The project was supported by the National Natural Science Foundation of China 21566028The project was supported by the National Natural Science Foundation of China 21566029Natural Science Foundation of Inner Mongolia 2015BS0206The project was supported by the National Natural Science Foundation of China 21266017Natural Science Foundation of Inner Mongolia 2016BS0204The project was supported by the National Natural Science Foundation of China 21676149Natural Science Foundation of Inner Mongolia 2014MS0220

Figures(6)

  • The catalytic effect of calcium component on steam gasification of Shengli lignite char was studied. Demineralized coal samples were loaded with calcium oxide and pyrolyzed at 1 100℃ (Ca-J). Ca-J+ was prepared from Ca-J treated by hydrochloric acid. The char samples were characterized by BET, SEM-EDS, XRD, FT-IR and XPS. The steam gasification of the char samples was performed in a micro fixed bed reactor. The possible catalytic active micro structure was discussed and proposed. The results show that carbon conversion and reactivity index of Ca-J and Ca-J+ samples during steam gasification were substantially similar, but much higher than those of demineralized char samples (SL+-J). Ca (CH3COO)2 and Ca-OOR, two calcium species are present in Ca-J+ sample determined by XPS. Chemical analysis and SEM-EDS prove that calcium content of Ca-J+ decreases by more than 97% than that of Ca-J sample. XRD analysis indicates free inorganic mineral (CaS, CaO) is removed by hydrochloric acid. FT-IR spectra show C=O, C-O peaks present in Ca-J and Ca-J+ samples. So it is postulated that "R-O-Ca-O-R'" (R and R' are aliphatic and aromatic structures, respectively) is the catalyst active microstructure during char steam gasification.
  • 加载中
    1. [1]

      LIU Li-zhi. The central inner mongolia coal resources development and regional effect research[D]. Changchun:Northeast Normal University, 2013.

    2. [2]

      ZHOU Chen-liang, LIU Quan-sheng, LI Yang, ZHI Ke-duan, TENG Ying-yue, SONG Yin-min, HE Run-xia. Effects of inherent minerals on the production of pyrolysis gases and the corresponding kinetics for shengli lignite[J]. Proc CSEE, 2013,33(35):21-27.  

    3. [3]

      XU Xiu-qiang, WANG Yong-gang, CHEN Guo-peng, BAI Lei, ZHANG Kun-jun, YANG Sa-sha, ZHANG Shu. Influence of cooling treatments on char microstructure and reactivity of Shengli brown coal[J]. J Fuel Chem Technol, 2015,43(1):1-8.  

    4. [4]

      XU Xiu-qiang, WANG Yong-gang, ZHANG Shu, CHEN Zong-ding, CHEN Xu-jun, HE Xin. Evolution behavior of reactivity and microstructure of lignite char during in-situ gasification with steam[J]. J Fuel Chem Technol, 2015,43(3):273-280.  

    5. [5]

      WANG J, JIANG M Q, YAO Y H, ZHANG Y M, CAO J Q. Steam gasification of coal char catalyzed by K2CO3 for enhanced production of hydrogen without formation of methane[J]. Fuel, 2009,88(9):1572-1579. doi: 10.1016/j.fuel.2008.12.017

    6. [6]

      WANG J, YAO Y H, CAO J Q, JIANG M Q. Enhanced catalysis of K2CO3 for steam gasification of coal char by using Ca (OH)2 in char preparation[J]. Fuel, 2010,89(2):310-317. doi: 10.1016/j.fuel.2009.09.001

    7. [7]

      WANG Xing-jun, CHEN Fan-min, LIU Hai-feng, YU Guang-suo, WANG Fu-chen. Interaction of potassium with mineral matter in coal during steam gasification[J]. J Fuel Chem Technol, 2013,41(1):9-12.  

    8. [8]

      OHTSUKA Y, ASAMI K. Steam gasification of coals with calcium hydroxide[J]. Energy Fuels, 1995,9(6):1038-1042. doi: 10.1021/ef00054a016

    9. [9]

      OHTSUKA Y, ASAMI K. Ion-exchanged calcium from calcium carbonate and low-rank coals:High catalytic activity in steam gasification[J]. Energy Fuels, 1996,10(2):431-435. doi: 10.1021/ef950174f

    10. [10]

      JIANG M Q, ZHOU R, HU J, WANG F C, WANG J. Calcium-promoted catalytic activity of potassium carbonate for steam gasification of coal char:Influences of calcium species[J]. Fuel, 2012,99:64-71. doi: 10.1016/j.fuel.2012.04.007

    11. [11]

      ZHOU Chen-liang, LIU Quan-sheng, LI Yang, ZHI Ke-duan, TENG Ying-yue, SONG Yin-min. Production of hydrogen-rich syngas by steam gasification of Shengli lignite and catalytic effect of inherent minerals[J]. CIESC J, 2013,64(6):2092-2102.  

    12. [12]

      LI Y, ZHOU C L, LI N, ZHI K D, SONG Y M, HE R X, TENG Y Y, LIU Q S. Production of high H2/CO syngas by steam gasification of shengli lignite:Catalytic effect of inherent minerals[J]. Energy Fuels, 2015,29(8):4738-4746. doi: 10.1021/acs.energyfuels.5b00168

    13. [13]

      CLEMENS A H, DAMIANO L F, MATHESON T W. The effect of calcium on the rate and products of steam gasification of char from low rank coal[J]. Fuel, 1998,77(9):1017-1020.  

    14. [14]

      LI Yang, LI Na, LIU Yang, FENG Wei, ZHAO Bin, ZHI Ke-duan, HE Run-xia, TENG Ying-yue, SONG Yin-min, ZHOU Chen-liang, LIU Quan-sheng. Effect of pyrolysis temperature on the structure and steam gasification reactivity of calcium-added char[J]. J Inner Mongolia Univ Technol (Nat Sci Ed), 2015,34(4):270-275.  

    15. [15]

      LI Yang, LIU Yang, FENG Wei, ZHAO Bin, ZHI Ke-duan, SONG Yin-min, HE Run-xia, ZHOU Chen-liang, LIU Quan-sheng. Influence of calcium oxide on Shengli lignite char microstructure and steam gasification performance[J]. J Fuel Chem Technol, 2015,43(9):1038-1043.  

    16. [16]

      ZHANG Z G, KYOTANI T, TOMITA A. TPD study on coal chars chemisorbed with oxygen-containing gases[J]. Energy Fuels, 1988,2(5):679-684. doi: 10.1021/ef00011a014

    17. [17]

      JO-SHU C, ADCOCK J P, LAUDERBACK L L, FALCONER J L. TPR and SIMS studies of CaCO3 catalyzed CO2 gasification of carbon[J]. Carbon, 1989,27(4):593-602. doi: 10.1016/0008-6223(89)90010-9

    18. [18]

      CAZORLA-AMOROS D, LINARES-SOLANO A, DE LECEA C S M, JOLY J P. Calcium-carbon interaction study:Its importance in the carbon-gas reactions[J]. Carbon, 1991,29(3):361-369. doi: 10.1016/0008-6223(91)90205-W

    19. [19]

      CAZORLA-AMOROS D, LINARES-SOLANO A, MARCILLA GOMIS A F, SALINAS-MARTINAS DE C. Calcium catalytic active sites in carbon-gas reactions. Determination of the specific activity[J]. Energy Fuels, 1991,5(6):796-802. doi: 10.1021/ef00030a005

    20. [20]

      CAZORLA-AMOROS D, LINARES-SOLANO A, SALINAS-MARTINEZD L C, JOLY J P. A temperature-programmed reaction study of calcium-catalyzed carbon gasification[J]. Energy Fuels, 1992,6(3):287-293. doi: 10.1021/ef00033a008

    21. [21]

      FENG Jie, LI Wen-ying, XIE Ke-chang. The catalysis of limestone during the steam gasification of coal[J]. J Taiyuan Univ Technol, 1996,27(4):50-56.  

    22. [22]

      OAHTSUK Y, XU C, KONG D, TSUBOUCHI N. Decomposition of ammonia with iron and calcium catalysts supported on coal chars[J]. Fuel, 2004,83(6):685-692. doi: 10.1016/j.fuel.2003.05.002

    23. [23]

      LI X, BAI Z Q, BAI J, ZHAO B B, LI P, HAN YN, LI W. Effect of Ca2+ species with different modes of occurrence on direct liquefaction of a calcium-rich lignite[J]. Fuel Process Technol, 2015,133:161-166. doi: 10.1016/j.fuproc.2015.02.001

    24. [24]

      ZHU Ting-yu, ZHANG Shou-yu, HUANG Jie-jie, WANG Yang. Effect of calcium oxide on properties of char from fluidized bed coal mild gasification[J]. J Fuel Chem Technol, 2000,28(1):40-43.  

    25. [25]

      WANG J, MORISHITA K, TAKARADA T. High-temperature interactions between coal char and mixtures of calcium oxide, quartz, and kaolinite[J]. Energy Fuels, 2001,15(5):1145-1152. doi: 10.1021/ef0100092

    26. [26]

      JOLY J P, CAZORLA-AMOROS D, CHARCOSSE H, LINARES-SOLANO A, MARCILIO N R, MARTINEZ-ALONSO A, SALINAS-MARTINEZ DE LECEA C. The state of calcium as a char gasification catalyst-a temperature-programmed reaction study[J]. Fuel, 1990,69(7):878-884. doi: 10.1016/0016-2361(90)90235-I

    27. [27]

      TSUBOUCHI N, XU C, OHTSUKA Y. Carbon crystallization during high-temperature pyrolysis of coals and the enhancement by calcium[J]. Energy Fuels, 2003,17(5):1119-1125. doi: 10.1021/ef020265u

    28. [28]

      DEAN J A. Lange's Handbook of Chemistry[M]. Beijing:Science Press, 1991.

    29. [29]

      XIE Ke-chang. Coal Structure and Its Reactivity[M]. Beijing:Science Press, 2002:116-130.

    30. [30]

      VAN HEEK K H, HODEK W. Structure and pyrolysis behavior of different coals and relevant model substances[J]. Fuel, 1994,73(6):886-896. doi: 10.1016/0016-2361(94)90283-6

    31. [31]

      MARRIOTT A S, HUNT A J, BERGSTROM E, WILSON K, BUDARIN V L, THOMAS-OATE J, BRYDSON R. Investigating the structure of biomass-derived non-graphitizing mesoporous carbons by electron energy loss spectroscopy in the transmission electron microscope and X-ray photoelectron spectroscopy[J]. Carbon, 2014,67:514-524. doi: 10.1016/j.carbon.2013.10.024

  • 加载中
    1. [1]

      Xue LiuLipeng WangLuling LiKai WangWenju LiuBiao HuDaofan CaoFenghao JiangJunguo LiKe Liu . Research on Cu-Based and Pt-Based Catalysts for Hydrogen Production through Methanol Steam Reforming. Acta Physico-Chimica Sinica, 2025, 41(5): 100049-0. doi: 10.1016/j.actphy.2025.100049

    2. [2]

      Pei LiYuenan ZhengZhankai LiuAn-Hui Lu . Boron-Containing MFI Zeolite: Microstructure Control and Its Performance of Propane Oxidative Dehydrogenation. Acta Physico-Chimica Sinica, 2025, 41(4): 2406012-0. doi: 10.3866/PKU.WHXB202406012

    3. [3]

      Yufan ZHAOJinglin YOUShixiang WANGGuopeng LIUXiang XIAYingfang XIEMeiqin SHENGFeiyan XUKai TANGLiming LU . Raman spectroscopic quantitative study of the melt microstructure in binary Li2O-GeO2 functional crystals. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1533-1544. doi: 10.11862/CJIC.20250063

    4. [4]

      Fangxuan LiuZiyan LiuGuowei ZhouTingting GaoWenyu LiuBin Sun . 中空结构光催化剂. Acta Physico-Chimica Sinica, 2025, 41(7): 100071-0. doi: 10.1016/j.actphy.2025.100071

    5. [5]

      Qilin YUYifei XUPengjun ZHANGShuwei HAOChongqiang ZHUChunhui YANG . Effect of regulating K+/Na+ ratio on the structure and optical properties of double perovskite Cs2NaBiCl6: Mn2+. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1058-1067. doi: 10.11862/CJIC.20240418

    6. [6]

      Ximeng CHIJianwei WEIYunyun WANGWenxin DENGJiayi DAIXu ZHOU . First-principles study of the electronic structure and optical properties of Au and I doped-inorganic lead-free double perovskite Cs2NaBiCl6. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1371-1379. doi: 10.11862/CJIC.20240401

    7. [7]

      Ying LiangYuheng DengShilv YuJiahao ChengJiawei SongJun YaoYichen YangWanlei ZhangWenjing ZhouXin ZhangWenjian ShenGuijie LiangBin LiYong PengRun HuWangnan Li . Machine learning-guided antireflection coatings architectures and interface modification for synergistically optimizing efficient and stable perovskite solar cells. Acta Physico-Chimica Sinica, 2025, 41(9): 100098-0. doi: 10.1016/j.actphy.2025.100098

    8. [8]

      Yingqi BAIHua ZHAOHuipeng LIXinran RENJun LI . Perovskite LaCoO3/g-C3N4 heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 480-490. doi: 10.11862/CJIC.20240259

    9. [9]

      Haitang WANGYanni LINGXiaqing MAYuxin CHENRui ZHANGKeyi WANGYing ZHANGWenmin WANG . Construction, crystal structures, and biological activities of two Ln3 complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1474-1482. doi: 10.11862/CJIC.20240188

    10. [10]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    11. [11]

      Jingjing QINGFan HEZhihui LIUShuaipeng HOUYa LIUYifan JIANGMengting TANLifang HEFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two complexes of dimethylglyoxime organotin. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1301-1308. doi: 10.11862/CJIC.20240003

    12. [12]

      Changqing MIAOFengjiao CHENWenyu LIShujie WEIYuqing YAOKeyi WANGNi WANGXiaoyan XINMing FANG . Crystal structures, DNA action, and antibacterial activities of three tetranuclear lanthanide-based complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2455-2465. doi: 10.11862/CJIC.20240192

    13. [13]

      Jing WUPuzhen HUIHuilin ZHENGPingchuan YUANChunfei WANGHui WANGXiaoxia GU . Synthesis, crystal structures, and antitumor activities of transition metal complexes incorporating a naphthol-aldehyde Schiff base ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2422-2428. doi: 10.11862/CJIC.20240278

    14. [14]

      Xueqi YangJuntao ZhaoJiawei YeDesen ZhouTingmin DiJun Zhang . 调节NNU-55(Fe)的d带中心以增强CO2吸附和光催化活性. Acta Physico-Chimica Sinica, 2025, 41(7): 100074-0. doi: 10.1016/j.actphy.2025.100074

    15. [15]

      Jingkun YuXue YongAng CaoSiyu Lu . Bi-Layer Single Atom Catalysts Boosted Nitrate-to-Ammonia Electroreduction with High Activity and Selectivity. Acta Physico-Chimica Sinica, 2024, 40(6): 2307015-0. doi: 10.3866/PKU.WHXB202307015

    16. [16]

      Xin MAYa SUNNa SUNQian KANGJiajia ZHANGRuitao ZHUXiaoli GAO . A Tb2 complex based on polydentate Schiff base: Crystal structure, fluorescence properties, and biological activity. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1347-1356. doi: 10.11862/CJIC.20230357

    17. [17]

      Xinting XIONGZhiqiang XIONGPanlei XIAOXuliang NIEXiuying SONGXiuguang YI . Synthesis, crystal structures, Hirshfeld surface analysis, and antifungal activity of two complexes Na(Ⅰ)/Cd(Ⅱ) assembled by 5-bromo-2-hydroxybenzoic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1661-1670. doi: 10.11862/CJIC.20240145

    18. [18]

      Qing LiGuangxun ZhangYuxia XuYangyang SunHuan Pang . P-Regulated Hierarchical Structure Ni2P Assemblies toward Efficient Electrochemical Urea Oxidation. Acta Physico-Chimica Sinica, 2024, 40(9): 2308045-0. doi: 10.3866/PKU.WHXB202308045

    19. [19]

      Asif Hassan RazaShumail FarhanZhixian YuYan Wu . Double S-Scheme ZnS/ZnO/CdS Heterostructure Photocatalyst for Efficient Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(11): 2406020-0. doi: 10.3866/PKU.WHXB202406020

    20. [20]

      Linjie ZHUXufeng LIU . Synthesis, characterization and electrocatalytic hydrogen evolution of two di-iron complexes containing a phosphine ligand with a pendant amine. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 939-947. doi: 10.11862/CJIC.20240416

Metrics
  • PDF Downloads(0)
  • Abstract views(1321)
  • HTML views(174)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return