Citation: Du Yulin, Liang Jing. Advances in the Application of Aptamers in Tumor Targeted Therapy[J]. Chemistry, ;2017, 80(9): 809-818, 862. shu

Advances in the Application of Aptamers in Tumor Targeted Therapy

  • Corresponding author: Liang Jing, liangjing@cumt.edu.cn
  • Received Date: 26 March 2017
    Accepted Date: 11 May 2017

Figures(4)

  • Traditional anti-tumor drugs can cause serious side effects in clinical treatment due to their nonspecific toxicity. Aptamers are a class of small nucleic acid ligands that have high affinity and specificity for their targets. Well-characterized biomarkers, especially those closely related to the development of cancer, can be used as targets for aptamer selection via the SELEX method. The newly obtained aptamers may be able to act as drugs themselves, or conjugate with other chemical drugs, siRNA, and nanoparticles to generate targeted drug delivery systems which can target specific tumor cells, thus minimizing the toxicity to normal cells, reducing the dose needed for treatment and enhancing therapeutic efficacy. In this review, we summarize the current advances in the application of aptamers in tumor targeted therapy with aptamers as anti-tumor drugs, as drug carriers, as RNA-based therapeutic carriers or as targeted ligands for conjugates with nanoparticles.
  • 加载中
    1. [1]

      A D Ellington, J W Szostak. Nature, 1990, 346(6287):818~822. 

    2. [2]

      C Tuerk, L S Gold. Science, 1990, 249(4968):505~510. 

    3. [3]

      J C Cox, A D Ellington. Bioorg. Med. Chem., 2001, 9(10):2525~2531. 

    4. [4]

      D Eulberg, K Buchner, C Maasch et al. Nucl. Acids Res., 2005, 33(4):e45.

    5. [5]

      C P Rusconi, E Scardino, J Layzer et al. Nature, 2002, 419(6902):90~94. 

    6. [6]

      K M Bompiani, D M Monroe, F C Church et al. J. Thromb. Haemost., 2012, 10(5):870~880. 

    7. [7]

      J Soutschek, A Akinc, B Bramlage et al. Nature, 2004, 432(7014):173~178. 

    8. [8]

      A Nitsche, A Kurth, A Dunkhorst et al. BMC Biotechnol., 2007, 7(1):48. 

    9. [9]

      G Mayer. Angew. Chem. Int. Ed., 2009, 48(15):2672~2689. 

    10. [10]

      X Yan, X Gao, Z Zhang. Genomics Proteomics Bioinformatics, 2004, 2(1):32~42. 

    11. [11]

      M Kuwahara, N Sugimoto. Molecules, 2010, 15(8):5423~5444. 

    12. [12]

      I Lebars, T Richard, C D Primo et al. Blood Cells Mol. Dis., 2007, 38(3):204~209. 

    13. [13]

      F J Hernandez, K R Stockdale, L Huang et al. Nucl. Acid Ther., 2012, 22(1):58~68.

    14. [14]

      N Li, H H Nguyen, M Byrom et al. PLoS One, 2011, 6(6):e20299.

    15. [15]

      N Derbyshire, S J White, D H Bunka et al. Anal. Chem., 2012, 84(15):6595~6602. 

    16. [16]

      L Tan, K G Neoh, E T Kang et al. Macromol. Biosci., 2011, 11(10):1331~1335. 

    17. [17]

      R M Boomer, S D Lewis, J M Healy et al. Oligonucleotides, 2005, 15(3):183~195. 

    18. [18]

      C P Rusconi, J D Roberts, G A Pitoc et al. Nat. Biotechnol., 2004, 22(11):1423~1428. 

    19. [19]

      K Schmidt, S Borkowski, J Kurreck et al. Nucl. Acids Res., 2004, 32(19):5757~5765. 

    20. [20]

      D Eulberg, S Klussmann. ChemBioChem., 2003, 4(10):979~983. 

    21. [21]

      J J Turner, J S Hoos, S Vonhoff et al. Nucl. Acids Res., 2011, 39(21):e147.

    22. [22]

      W Sun, L Du, M Li. Curr. Pharm. Des., 2011, 17(1):80~91. 

    23. [23]

      M Ye, J Hu, M Peng et al. Int. J. Mol. Sci., 2012, 13(3):3341~3353.

    24. [24]

      J Mi, Y Liu, Z N Rabbani et al. Nat. Chem. Biol., 2010, 6(1):22~24. 

    25. [25]

      H U Göringer. Trends Parasitol., 2012, 28(3):106~113. 

    26. [26]

      M Moreno, V M González. Curr. Med. Chem., 2011, 18(32):5003~5010. 

    27. [27]

      J C Gilbert, T De Feo~Fraulini, R M Hutabarat et al. Circulation, 2007, 116(23):2678~2686. 

    28. [28]

      J L Diener, H A Lagasse, D Duerschmied et al. J. Thromb. Haemost., 2009, 7(7):1155~1162. 

    29. [29]

      J Bradley, M Ju, G S Robinson. Angiogenesis, 2007, 10(2):141~148. 

    30. [30]

      L S Green, D Jellinek, R Jenison et al. Biochemistry, 1996, 35(45):14413~14424. 

    31. [31]

      A P Mann, T Tanaka, A Somasunderam et al. Adv. Mater., 2011, 23(36):278~282. 

    32. [32]

      A P Mann, R Bhavane, A Somasunderam et al. Oncotarget, 2011, 2(4):298~304. 

    33. [33]

      J Ruckman, L S Green, J Beeson et al. J. Biol. Chem., 1998, 273(32):20556~20567. 

    34. [34]

      N Ferrara, H P Gerber, J Lecouter. Nat. Med., 2003, 9(6):669~676. 

    35. [35]

      D Huang, D Vu, L A Cassiday et al. PNAS, 2003, 100(16):9268~9273. 

    36. [36]

      L L Lebruska, M L Rd. Biochemistry, 1999, 38(10):3168~3174. 

    37. [37]

      B J Hicke, C Marion, Y F Chang et al. J. Biol. Chem., 2001, 276(52):48644~48654. 

    38. [38]

      K S Schmidt, S Borkowski, J Kurreck et al. Nucl. Acids Res., 2004, 32(19):5757~5765. 

    39. [39]

      S E Lupold, B Hicke, Y Lin et al. Cancer Res., 2002, 62(14):4029~4033.

    40. [40]

      O C Farokhzad, S Jon, A Khademhosseini et al. Cancer Res., 2004, 64(21):7668~7672. 

    41. [41]

      Y Song, Z Zhu, Y An et al. Anal. Chem., 2013, 85(8):4141~4149. 

    42. [42]

      S Shigdar, J Lin, Y Yu et al. Cancer Sci., 2011, 102(5):991~998. 

    43. [43]

      S D Gomes, J Miguel, L Azema et al. Bioconjug. Chem., 2012, 23(11):2192~2200. 

    44. [44]

      B Hicke, A W Stephens, T A Gould et al. J. Nucl. Med., 2006, 47(4):668~678.

    45. [45]

      H Shi, X He, K Wang et al. PNAS, 2011, 108(10):3900~3905. 

    46. [46]

      A Nolte, S Klussmann, R Bald et al. Nat. Biotechnol., 1996, 14(9):1116~1119. 

    47. [47]

      S G Sayyed, H Hagele, O P Kulkarni et al. Diabetologia, 2009, 52(11):2445~2454. 

    48. [48]

      E Ng, A P Adamis. Ann. Ny. Acad. Sci., 2006, 1082(1):151~171. 

    49. [49]

      P Celec, Y Yonemitsu. Pathophysiology, 2004, 11(2):69~75. 

    50. [50]

      J Lee, M D Canny, A D Erkenez et al. PNAS, 2005, 102(52):18902~18907. 

    51. [51]

      Eyetech Study Group. Retina, 2002, 22(2):143~152. 

    52. [52]

      J Huang, J T Moore, S Z Soffer et al. J. Pediatr. Surg., 2001, 36(2):357~361. 

    53. [53]

      A C Girvan, Y Teng, L K Casson et al. Mol. Cancer Ther., 2006, 5(7):1790~1799. 

    54. [54]

      S Soundararajan, W Chen, E K Spicer et al. Cancer Res., 2008, 68(7):2358~2365. 

    55. [55]

      E M Reyesreyes, F R Salipur, M Shams et al. Mol. Oncol., 2015, 9(7):1392~1405. 

    56. [56]

      P J Bates, D A Laber, D M Miller et al. Exp. Mol. Pathol., 2009, 86(3):151~164. 

    57. [57]

      C Ritchie, B Doran, K Shah et al. Proc. Am. Assoc. Cancer Res., 2007, 48:4818.

    58. [58]

      D T Fearon. Cancer Immunol. Res., 2014, 2(3):187~193. 

    59. [59]

       

    60. [60]

      V Bagalkot, O C Farokhzad, R Langer et al. Angew. Chem., 2006, 118(48):8329~8332. 

    61. [61]

      Y Hu, J Duan, Q Zhan et al. PLoS ONE, 2012, 7(2):e31970.

    62. [62]

      Z Liu, J Duan, Y Song et al. J. Transl. Med., 2012, 10(1):148. 

    63. [63]

      Y Huang, D Shangguan, H Liu et al. ChemBioChem, 2009, 10(5):862~868. 

    64. [64]

      G Zhu, J Zheng, E Song et al. PNAS, 2013, 110(20):7998~8003. 

    65. [65]

      P Mallikaratchy, Z Tang, W Tan et al. ChemMedChem, 2008, 3(3):425~428. 

    66. [66]

      S H Lee, Y Y Kang, H E Jang et al. Adv. Drug Deliver. Rev., 2016(104), 78~92

    67. [67]

      J O McNamara, E R Andrechek, Y Wang et al. Nat. Biotechnol., 2006, 24(8):1005~1015. 

    68. [68]

      J Zhou, H Li, J Zhang et al. J. Vis. Exp., 2011, 52(52):e2954.

    69. [69]

      H Yoo, H Jung, S A Kim et al. Chem. Commun., 2014, 50(51):6765~6767. 

    70. [70]

       

    71. [71]

      Y Huang, K Sefah, S Bamrungsap et al. Langmuir, 2008, 24(20):11860~11865. 

    72. [72]

      Y Luo, Y Shiao, Y Huang et al. ACS Nano, 2011, 5(10):7796~7804. 

    73. [73]

      Y Guo, S Li, J Liu et al. Sens. Actuat. B, 2016,235:655~662. 

    74. [74]

      X Yang, X Y Liu, Z Liu et al. Adv. Mater., 2012, 24(21):2890~2895. 

    75. [75]

    76. [76]

      R Tietze, S Lyer, S Dürr et al. Nanomedicine, 2012, 7(3):447~457. 

    77. [77]

      S H Jalalian, S M Taghdisi, N Shamedani. Eur. J. Pharm. Sci., 2013, 50(2):191~197. 

    78. [78]

      K Pala, A Serwotka, F Jelen et al. Int. J. Nanomed., 2014, 9(1):67~76.

    79. [79]

      H Zhang, C Chen, L Hou et al. J. Drug Target., 2013, 21(3):312~319. 

    80. [80]

      S Taghavi, A H Nia, K Abnous et al. Int. J. Pharmaceut., 2017, 516(1~2):301~312. 

    81. [81]

      H Daraee, A Etemadi, M Kouhi et al. Artif. Cells Nanomed. Biotechnol., 2016, 44(1):381~391. 

    82. [82]

      H Bardania, S Tarvirdipour, F Dorkoosh, Artif. Cells Nanomed. Biotechnol., 2017, 45:1~12.

    83. [83]

      S E Baek, K H Lee, Y S Park et al. J. Control. Release, 2014, 196:234~242. 

    84. [84]

      Z X Liao, E Y Chuang, C C Lin et al. J. Control. Release, 2015, 208(28):42~51.

    85. [85]

      K Plourde, R M Derbali, A Desrosier et al. J. Control. Release, 2017, 251:82~91. 

    86. [86]

      K T Nguyen, T H Nguyen, D H Do et al. Adv. Nat. Sci.:Nanosci. Nanotechnol., 2017, 8(1):5002~5009.

    87. [87]

      J Zhang, R Chen, X Fang et al. Nano Res., 2015, 8(1):201~218. 

    88. [88]

      L Li, D Xiang, S Shigdar et al. Int. J. Nanomed., 2014, 21(9):1083~1096.

    89. [89]

      F Huang, M You, T Chen et al. Chem. Commun., 2014, 50(23):3103~3105. 

    90. [90]

      J Mosafer, K Abnous, M Tafaghodi et al. Eur. J. Pharm. Sci., 2017,113:60~74.

    91. [91]

      J Mi, Y M Liu, Z N Rabbani. Nat. Chem. Biol., 2010, 6:22~24. 

    92. [92]

      S Kraemer, J D Vaught, C Bock et al. PLoS One, 2011, 6(10):e26332.

    93. [93]

      M Cho, S S Oh, J Nie et al. PNAS, 2013,110(46):18460~18465. 

    94. [94]

      M G P Saifer, L D Williams, M A Sobczyk et al. Mol. Immunol., 2014,57(2):236~246. 

  • 加载中
    1. [1]

      Qilong Fang Yiqi Li Jiangyihui Sheng Quan Yuan Jie Tan . Magical Pesticide Residue Detection Test Strips: Aptamer-based Lateral Flow Test Strips for Organophosphorus Pesticide Detection. University Chemistry, 2024, 39(5): 80-89. doi: 10.3866/PKU.DXHX202310004

    2. [2]

      Luyu ZhangZirong DongShuai YuGuangyue LiWeiwen KongWenjuan LiuHaisheng HeYi LuWei WuJianping Qi . Ionic liquid-based in situ dynamically self-assembled cationic lipid nanocomplexes (CLNs) for enhanced intranasal siRNA delivery. Chinese Chemical Letters, 2024, 35(7): 109101-. doi: 10.1016/j.cclet.2023.109101

    3. [3]

      Yunjie DangYanru FengXiao ChenChaoxing HeShujie WeiDingyang LiuJinlong QiHuaxing ZhangShaokun YangZhiyun NiuBai Xiang . Development of a multi-level pH-responsive lipid nanoplatform for efficient co-delivery of siRNA and small-molecule drugs in tumor treatment. Chinese Chemical Letters, 2024, 35(12): 109660-. doi: 10.1016/j.cclet.2024.109660

    4. [4]

      Zunyuan Xie Lijin Yang Zixiao Wan Xiaoyu Liu Yushan He . Exploration of the Preparation and Characterization of Nano Barium Titanate and Its Application in Inorganic Chemistry Laboratory Teaching. University Chemistry, 2024, 39(4): 62-69. doi: 10.3866/PKU.DXHX202310137

    5. [5]

      Juan Yuan Bin Zhang Jinping Wu Mengfan Wang . Design of a Comprehensive Experiment on Preparation and Characterization of Cu2(Salen)2 Nanomaterials with Two Distinct Morphologies. University Chemistry, 2024, 39(10): 420-425. doi: 10.3866/PKU.DXHX202402014

    6. [6]

      Simin Fang Wei Huang Guanghua Yu Cong Wei Mingli Gao Guangshui Li Hongjun Tian Wan Li . Integrating Science and Education in a Comprehensive Chemistry Design Experiment: The Preparation of Copper(I) Oxide Nanoparticles and Its Application in Dye Water Remediation. University Chemistry, 2024, 39(8): 282-289. doi: 10.3866/PKU.DXHX202401023

    7. [7]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    8. [8]

      Shuyu Liu Xiaomin Sun Bohan Song Gaofeng Zeng Bingbing Du Chongshen Guo Cong Wang Lei Wang . Design and Fabrication of Phospholipid-Vesicle-based Artificial Cells towards Biomedical Applications. University Chemistry, 2024, 39(11): 182-188. doi: 10.12461/PKU.DXHX202404113

    9. [9]

      Wenjun Zheng . Application in Inorganic Synthesis of Ionic Liquids. University Chemistry, 2024, 39(8): 163-168. doi: 10.3866/PKU.DXHX202401020

    10. [10]

      Shasha SUNWeichun HUANGMengke WANG . Research progress of interface regulation strategies and applications of two‑dimensional MXenes. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1465-1482. doi: 10.11862/CJIC.20240430

    11. [11]

      Jian LiYu ZhangRongrong YanKaiyuan SunXiaoqing LiuZishang LiangYinan JiaoHui BuXin ChenJinjin ZhaoJianlin Shi . Highly Efficient, Targeted, and Traceable Perovskite Nanocrystals for Photoelectrocatalytic Oncotherapy. Acta Physico-Chimica Sinica, 2025, 41(5): 100042-0. doi: 10.1016/j.actphy.2024.100042

    12. [12]

      Jiahui CHENTingting ZHENGXiuyun ZHANGWei LÜ . Research progress of near-infrared absorption inorganic nanomaterials in photothermal and photodynamic therapy of tumors. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2396-2414. doi: 10.11862/CJIC.20240106

    13. [13]

      Jiahao Zeng Hui Chao . 诱导程序性细胞死亡的金属抗肿瘤药物研究. University Chemistry, 2025, 40(6): 145-159. doi: 10.12461/PKU.DXHX202406019

    14. [14]

      Tingting XUWenjing ZHANGYongbo SONG . Research advances of atomic precision coinage metal nanoclusters in tumor therapy. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2275-2285. doi: 10.11862/CJIC.20240229

    15. [15]

      Mengmeng YuanXiwen HuNa LiLimin XuMengxi ZhuXing PeiRui LiLu SunYupeng ChenFei YuHuining He . Kidney targeted delivery of siRNA mediated by peptide-siRNA conjugate for the treatment of acute kidney injury. Chinese Chemical Letters, 2025, 36(6): 110251-. doi: 10.1016/j.cclet.2024.110251

    16. [16]

      Fa Wang Yu Chen Hui Chao . Ruthenium(II) Complexes as Photoactivated Chemo-Prodrugs for Hypoxic Tumor Therapy. University Chemistry, 2025, 40(7): 200-212. doi: 10.12461/PKU.DXHX202410024

    17. [17]

      Xue WuYupeng LiuBingzhe WangLingyun LiZhenjian LiQingcheng WangQuansheng ChengGuichuan XingSongnan Qu . Rationally assembling different surface functionalized carbon dots for enhanced near-infrared tumor photothermal therapy. Acta Physico-Chimica Sinica, 2025, 41(9): 100109-0. doi: 10.1016/j.actphy.2025.100109

    18. [18]

      Wenjing ZHANGXiaoqing WANGZhipeng LIU . Recent developments of inorganic metal complex-based photothermal materials and their applications in photothermal therapy. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2356-2372. doi: 10.11862/CJIC.20240254

    19. [19]

      Di WURuimeng SHIZhaoyang WANGYuehua SHIFan YANGLeyong ZENG . Construction of pH/photothermal dual-responsive delivery nanosystem for combination therapy of drug-resistant bladder cancer cell. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1679-1688. doi: 10.11862/CJIC.20240135

    20. [20]

      Ping Song Nan Zhang Jie Wang Rui Yan Zhiqiang Wang Yingxue Jin . Experimental Teaching Design on Synthesis and Antitumor Activity Study of Cu-Pyropheophorbide-a Methyl Ester. University Chemistry, 2024, 39(6): 278-286. doi: 10.3866/PKU.DXHX202310087

Metrics
  • PDF Downloads(395)
  • Abstract views(15792)
  • HTML views(6829)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return