Citation: Zhang Jingjing, Li Li, Zhang Xinyue, Zhou Qianlong, Hao Yuting. Multimode Photocatalysis of Hollow Sphere In2O3/ZrO2-TiO2 Nanocomposite[J]. Chemistry, ;2017, 80(10): 935-941, 975. shu

Multimode Photocatalysis of Hollow Sphere In2O3/ZrO2-TiO2 Nanocomposite

  • Corresponding author: Li Li, qqhrll@163.com
  • Received Date: 24 February 2017
    Accepted Date: 23 May 2017

Figures(7)

  • In this paper, using polystyrene (PS) spheres as the template, In2O3/ZrO2-TiO2 hollow spheres (In2O3/ZrO2-TiO2-H) with different proportions were prepared by one-step method combined with calcination treatment.The structures, compositions and morphologies of as-prepared composites were characterized by XRD, XPS, UV-Vis/DRS, SEM and N2 absorption-desorption measurements.The results showed that In2O3/ZrO2-TiO2 composites had a hollow spherical structure after being treated by PS template, and the spherical wall was formed by the nanoparticles.After compounding In2O3 with ZrO2-TiO2, its optical absorption had red-shifted slightly, moreover, the specific surface area of In2O3/ZrO2-TiO2-H (1:4) hollow sphere was larger (66.92 m2·g-1).In2O3/ZrO2-TiO2-H (1:4) showed higher photocatalytic activity in the degradation of methyl orange (MO) under multimodes photocatalysis, compared with P25, ZrO2, In2O3/ZrO2-TiO2, and other ratio In2O3/ZrO2-TiO2-H.
  • 加载中
    1. [1]

      X F Li, X Z Zhen, S G Meng. Environ. Sci. Technol., 2013, 47:9911~9917. 

    2. [2]

      A Fujishima, T N Rao, D A Tryk. J. Photochem. Photobio. C, 2000, 1:1~21. 

    3. [3]

      D Zhang, R Qiu, L Song. J. Hazard. Mater., 2009, 163:843~847. 

    4. [4]

      M A Ahmed, M F Abdel-Messiah. J. Alloy Compd., 2011, 509:2154~2158. 

    5. [5]

      H Djojoputro, X F Zhou, S Z Qiao et al. J. Am. Chem. Soc., 2006, 128(19):6320~6321. 

    6. [6]

      Y Mao, M Kanungo, T Hemraj-Benny et al. J. Phys. Chem. B, 2006, 110(2):702~710. 

    7. [7]

      X M Li, L F Jiang, C Zhou et al. NPG Asia Mater., 2015, 7:e165.

    8. [8]

      J G Yu, X X Yu. Environ. Sci. Technol., 2008, 42(13):4902~4907. 

    9. [9]

      J B Joo, Q Zhang, I Lee et al. Adv. Funct. Mater., 2012, 22:166~174. 

    10. [10]

      Y Wang, L J Zhu, N N Ba ta al. Mater. Res. Bull., 2017, 86:268~276. 

    11. [11]

      S F Chen, H Q Wang, L J Zhu et al. Appl. Surf. Sci., 2014, 321:86~93. 

    12. [12]

      M R Gholipour, C T Dinh, F Beland et al. Nanoscale, 2015, 7:187~8208.

    13. [13]

      H Wang, L Zhang, Z Chen et al. Chem. Soc. Rev., 2014, 43:5234~5244. 

    14. [14]

      J H Kim, S B Kang, J H Lee et al. Org. Electron., 2013, 14(5):1305~1312. 

    15. [15]

      Z Galazka, R Uecker, K Irmscher et al. J. Cryst. Growth., 2013, 362:349~352. 

    16. [16]

      D Shao, L Qin, S Sawyer. Opt. Mater., 2013, 35(3):563~566. 

    17. [17]

       

    18. [18]

      C Wang, A Geng, Y Guo. J. Colloid Interf. Sci., 2006, 301(1):236~247. 

    19. [19]

       

    20. [20]

      P Zhang, Y Yu, E Wang. ACS Appl. Mater. Interf., 2014, 6(7):4622~4629. 

    21. [21]

      J Wang, Y Yu, S Li. J. Phys. Chem. C, 2013, 117(51):27120~27126. 

    22. [22]

       

    23. [23]

      W A Abdallah, S D Taylor. J. Phys. Chem. C, 2008, 112(48):18963~18972. 

    24. [24]

      L Li, X L Zhang, W Z Zhang et al. Colloid Surf. A, 2014, 457:134~141. 

    25. [25]

      J J Zhang, L Li, S Wang et al. RSC Adv., 2016, 6:13991~14001. 

    26. [26]

      B Chavillon, A Renaud, F Tessier. J. Am. Chem. Soc., 2012, 134:464~470. 

    27. [27]

      I N W Geoffrey, B M James, I Hicham et al. Chem. Mater., 2008, 20:1183~1190. 

    28. [28]

      S Zou, G C Schatz. J. Chem. Phys., 2004, 121(24):12606~12612. 

    29. [29]

      L Li, X D Huang, T Y Hu et al. New J. Chem., 2014, 38(11):5293~5302. 

    30. [30]

      K S W Sing, D H Everett, R A W Haul et al. Pure Appl. Chem., 1985, 57(4):603~619.

    31. [31]

      L Li, X D Huang, J Q Zhang et al. J. Colloid Interf. Sci., 2015, 443:13~22. 

    32. [32]

    33. [33]

      Y Xu, Schoonen, A A Martin. Am. Mineral., 2000, 85:543~556. 

  • 加载中
    1. [1]

      Jiaxing CaiWendi XuHaoqiang ChiQian LiuWa GaoLi ShiJingxiang LowZhigang ZouYong Zhou . Highly Efficient InOOH/ZnIn2S4 Hollow Sphere S-Scheme Heterojunction with 0D/2D Interface for Enhancing Photocatalytic CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(11): 2407002-0. doi: 10.3866/PKU.WHXB202407002

    2. [2]

      Tinghui Hu Junwen Long Yi Long Xuanhe Liu . Plastic Disillusionment. University Chemistry, 2025, 40(7): 249-254. doi: 10.12461/PKU.DXHX202409004

    3. [3]

      Guimin ZHANGWenjuan MAWenqiang DINGZhengyi FU . Synthesis and catalytic properties of hollow AgPd bimetallic nanospheres. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 963-971. doi: 10.11862/CJIC.20230293

    4. [4]

      Bingliang Li Yuying Han Dianyang Li Dandan Liu Wenbin Shang . One-Step Synthesis of Benorilate Guided by Green Chemistry Principles and in vivo Dynamic Evaluation. University Chemistry, 2024, 39(6): 342-349. doi: 10.3866/PKU.DXHX202311070

    5. [5]

      Zeyi Yan Ruitao Liu Xinyu Qi Yuxiang Zhang Lulu Sun Xiangyuan Li Anchao Feng . Exploration of Suspension Polymerization: Preparation and Fluorescence Stability of Perovskite Polystyrene Microbeads. University Chemistry, 2025, 40(4): 72-79. doi: 10.12461/PKU.DXHX202405110

    6. [6]

      Heng ChenLonghui NieKai XuYiqiong YangCaihong Fang . Remarkable Photocatalytic H2O2 Production Efficiency over Ultrathin g-C3N4 Nanosheet with Large Surface Area and Enhanced Crystallinity by Two-Step Calcination. Acta Physico-Chimica Sinica, 2024, 40(11): 2406019-0. doi: 10.3866/PKU.WHXB202406019

    7. [7]

      Yu WangHaiyang ShiZihan ChenFeng ChenPing WangXuefei Wang . 具有富电子Ptδ壳层的空心AgPt@Pt核壳催化剂:提升光催化H2O2生成选择性与活性. Acta Physico-Chimica Sinica, 2025, 41(7): 100081-0. doi: 10.1016/j.actphy.2025.100081

    8. [8]

      Chengqian Mao Yanghan Chen Haotong Bai Junru Huang Junpeng Zhuang . Photodimerization of Styrylpyridinium Salt and Its Application in Silk Screen Printing. University Chemistry, 2024, 39(5): 354-362. doi: 10.3866/PKU.DXHX202312014

    9. [9]

      Xiutao XuChunfeng ShaoJinfeng ZhangZhongliao WangKai Dai . Rational Design of S-Scheme CeO2/Bi2MoO6 Microsphere Heterojunction for Efficient Photocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309031-0. doi: 10.3866/PKU.WHXB202309031

    10. [10]

      Liuyun ChenWenju WangTairong LuXuan LuoXinling XieKelin HuangShanli QinTongming SuZuzeng QinHongbing Ji . Soft template-induced deep pore structure of Cu/Al2O3 for promoting plasma-catalyzed CO2 hydrogenation to DME. Acta Physico-Chimica Sinica, 2025, 41(6): 100054-0. doi: 10.1016/j.actphy.2025.100054

    11. [11]

      Ruoqian Zhang Chaoqun Mu Yali Hou Mingming Zhang . 四苯乙烯基多组分金属有机笼的构筑及其固态发光性能研究. University Chemistry, 2025, 40(8): 277-283. doi: 10.12461/PKU.DXHX202410027

    12. [12]

      Tong ZhouXue LiuLiang ZhaoMingtao QiaoWanying Lei . Efficient Photocatalytic H2O2 Production and Cr(Ⅵ) Reduction over a Hierarchical Ti3C2/In4SnS8 Schottky Junction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309020-0. doi: 10.3866/PKU.WHXB202309020

    13. [13]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    14. [14]

      Tieping CAOYuejun LIDawei SUN . Surface plasmon resonance effect enhanced photocatalytic CO2 reduction performance of S-scheme Bi2S3/TiO2 heterojunction. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 903-912. doi: 10.11862/CJIC.20240366

    15. [15]

      Mahmoud SayedHan LiChuanbiao Bie . Challenges and prospects of photocatalytic H2O2 production. Acta Physico-Chimica Sinica, 2025, 41(9): 100117-0. doi: 10.1016/j.actphy.2025.100117

    16. [16]

      Linfeng XiaoWanlu RenShishi ShenMengshan ChenRunhua LiaoYingtang ZhouXibao Li . Enhancing Photocatalytic Hydrogen Evolution through Electronic Structure and Wettability Adjustment of ZnIn2S4/Bi2O3 S-Scheme Heterojunction. Acta Physico-Chimica Sinica, 2024, 40(8): 2308036-0. doi: 10.3866/PKU.WHXB202308036

    17. [17]

      Guoqiang ChenZixuan ZhengWei ZhongGuohong WangXinhe Wu . Molten Intermediate Transportation-Oriented Synthesis of Amino-Rich g-C3N4 Nanosheets for Efficient Photocatalytic H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(11): 2406021-0. doi: 10.3866/PKU.WHXB202406021

    18. [18]

      Wei ZhongDan ZhengYuanxin OuAiyun MengYaorong Su . Simultaneously Improving Inter-Plane Crystallization and Incorporating K Atoms in g-C3N4 Photocatalyst for Highly-Efficient H2O2 Photosynthesis. Acta Physico-Chimica Sinica, 2024, 40(11): 2406005-0. doi: 10.3866/PKU.WHXB202406005

    19. [19]

      Peng YUELiyao SHIJinglei CUIHuirong ZHANGYanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210

    20. [20]

      Xinyu YinHaiyang ShiYu WangXuefei WangPing WangHuogen Yu . Spontaneously Improved Adsorption of H2O and Its Intermediates on Electron-Deficient Mn(3+δ)+ for Efficient Photocatalytic H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312007-0. doi: 10.3866/PKU.WHXB202312007

Metrics
  • PDF Downloads(3)
  • Abstract views(2841)
  • HTML views(998)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return