Citation: Zhong Bingwei, Hu Kaikai, Dong Ye, Han Hui, Chen Xianlin. Preparation of Fe3O4/TiO2 Composites from Ilmenite and Their Photocatalytic Performance[J]. Chemistry, ;2018, 81(7): 592-597. shu

Preparation of Fe3O4/TiO2 Composites from Ilmenite and Their Photocatalytic Performance

  • Received Date: 10 March 2018
    Accepted Date: 30 March 2018

Figures(8)

  • TiO2 is widely used in semiconductor photocatalysis due to its excellent features. However, TiO2 particles with nanoscale is difficult to separate and recycle after the photocatalytic reactions. In this paper, we successfully synthesized the magnetic Fe3O4/TiO2 composite by the simple and mild dip-molding method. Both the TiO2 and Fe3O4 are originated by the cheap ilmenite as raw material. A series of characterization means including XRD, FT-IR, SEM and EDS were used to analyze the surface structure of the Fe3O4/TiO2 composite. Furthermore, the performance of Fe3O4/TiO2 composites was investigated by using of photocatalytic degradation of Rhodamine B (Rh B) as a probe reaction. The results demonstrated that the Fe3O4/TiO2 composite with mass ratio of 1:10 are stable and uniform, has the best photocatalytic activity for Rh B, and shows outstanding recyclability. The photocatalytic degradation reaction coincides with the first-order reaction kinetics.
  • 加载中
    1. [1]

    2. [2]

    3. [3]

      O Legrini, E Oliveros, A M Braun. Chem. Rev., 1993, 93:671-698. 

    4. [4]

      A Fujishima, T N Rao, D A Tryk. J. Photochem. Photobiol. C, 2010, 1:1-21.

    5. [5]

      Y Parent, D Blake, K Magrinibair et al. Solar Energy, 1996, 56:429-437. 

    6. [6]

      M Pelaez, A A Cruz, E Stathatos et al. Catal. Today, 2009, 144:19-25. 

    7. [7]

      M A Ahmed, E E El-Katori, Z H Gharni. J. Alloys Compd., 2013, 553:19-29. 

    8. [8]

      S Oros-Ruiz, R Gómez, R López et al. Catal. Commun., 2012, 21:72-76. 

    9. [9]

    10. [10]

      T Watanabe, A Nakajima, R Wang et al. Thin Solid Films, 1999, 351:260-263. 

    11. [11]

    12. [12]

      G S Shephard, S Stockenström, V D De et al. Water Res., 2002, 36:140-146. 

    13. [13]

    14. [14]

    15. [15]

      S Watson, D Beydoun, R Amal. J. Photochem. Photobiol. A, 2002, 148:303-313. 

    16. [16]

      S Xuan, W Jiang, X Gong et al. J. Phys. Chem. C, 2008, 113:553-558.

    17. [17]

      M I Franch, J A Ayllón, J Peral et al. Catal. Today, 2005, 101:245-252. 

    18. [18]

    19. [19]

    20. [20]

      W F Ma, Y Zhang, L L Li. ACS Nano, 2012, 6:3179-3188. 

    21. [21]

      Y X Li, M Zhang, M Guo. Rare Metals, 2009, 28:423-427. 

    22. [22]

    23. [23]

    24. [24]

    25. [25]

      M Agrawal, S Gupta, A Pich. Langmuir, 2010, 26:17649-17655. 

    26. [26]

      Y W Chen, T Yuan, F Wang et al. J. Mater. Sci.:Mater. Electron. 2016, 27:9983-9988.

    27. [27]

      H L Niu, Q M Wang, H X Liang et al. Materials, 2014, 7:4034-4044. 

    28. [28]

      C T Chen, Y C Chen. Anal. Chem., 2005, 77:5912-5919. 

    29. [29]

      Y Li, J S Wu, D W Qi et al. Chem. Commun., 2008, 8:564-566.

    30. [30]

      Y Zhang, X Yu, Y Jia et al. Eur. J. Inorg. Chem., 2011, 2011:5096-5104.

  • 加载中
    1. [1]

      Yadan LuoHao ZhengXin LiFengmin LiHua TangXilin She . Modulating reactive oxygen species in O, S co-doped C3N4 to enhance photocatalytic degradation of microplastics. Acta Physico-Chimica Sinica, 2025, 41(6): 100052-0. doi: 10.1016/j.actphy.2025.100052

    2. [2]

      Yingqi BAIHua ZHAOHuipeng LIXinran RENJun LI . Perovskite LaCoO3/g-C3N4 heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 480-490. doi: 10.11862/CJIC.20240259

    3. [3]

      Shijie LiKe RongXiaoqin WangChuqi ShenFang YangQinghong Zhang . Design of Carbon Quantum Dots/CdS/Ta3N5 S-scheme Heterojunction Nanofibers for Efficient Photocatalytic Antibiotic Removal. Acta Physico-Chimica Sinica, 2024, 40(12): 2403005-0. doi: 10.3866/PKU.WHXB202403005

    4. [4]

      Yichang Liu Li An Dan Qu Zaicheng Sun . “双碳”背景下的综合设计实验——以PbCrO4催化甲基蓝的光降解速率常数测定为例. University Chemistry, 2025, 40(6): 222-229. doi: 10.12461/PKU.DXHX202407105

    5. [5]

      Changjun YouChunchun WangMingjie CaiYanping LiuBaikang ZhuShijie Li . Improved Photo-Carrier Transfer by an Internal Electric Field in BiOBr/N-rich C3N5 3D/2D S-Scheme Heterojunction for Efficiently Photocatalytic Micropollutant Removal. Acta Physico-Chimica Sinica, 2024, 40(11): 2407014-0. doi: 10.3866/PKU.WHXB202407014

    6. [6]

      Yuanqing WangYusong PanHongwu ZhuYanlei XiangRong HanRun HuangChao DuChengling Pan . Enhanced Catalytic Activity of Bi2WO6 for Organic Pollutants Degradation under the Synergism between Advanced Oxidative Processes and Visible Light Irradiation. Acta Physico-Chimica Sinica, 2024, 40(4): 2304050-0. doi: 10.3866/PKU.WHXB202304050

    7. [7]

      Fei ZHOUXiaolin JIA . Co3O4/TiO2 composite photocatalyst: Preparation and synergistic degradation performance of toluene. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2232-2240. doi: 10.11862/CJIC.20240236

    8. [8]

      Xia ZHANGYushi BAIXi CHANGHan ZHANGHaoyu ZHANGLiman PENGShushu HUANG . Preparation and photocatalytic degradation performance of rhodamine B of BiOCl/polyaniline. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 913-922. doi: 10.11862/CJIC.20240255

    9. [9]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    10. [10]

      Xuejiao WangSuiying DongKezhen QiVadim PopkovXianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-0. doi: 10.3866/PKU.WHXB202408005

    11. [11]

      Haitao WangLianglang YuJizhou JiangArramelJing Zou . S-Doping of the N-Sites of g-C3N4 to Enhance Photocatalytic H2 Evolution Activity. Acta Physico-Chimica Sinica, 2024, 40(5): 2305047-0. doi: 10.3866/PKU.WHXB202305047

    12. [12]

      Jianyin HeLiuyun ChenXinling XieZuzeng QinHongbing JiTongming Su . Construction of ZnCoP/CdLa2S4 Schottky Heterojunctions for Enhancing Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(11): 2404030-0. doi: 10.3866/PKU.WHXB202404030

    13. [13]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    14. [14]

      Tong ZhouXue LiuLiang ZhaoMingtao QiaoWanying Lei . Efficient Photocatalytic H2O2 Production and Cr(Ⅵ) Reduction over a Hierarchical Ti3C2/In4SnS8 Schottky Junction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309020-0. doi: 10.3866/PKU.WHXB202309020

    15. [15]

      Linfeng XiaoWanlu RenShishi ShenMengshan ChenRunhua LiaoYingtang ZhouXibao Li . Enhancing Photocatalytic Hydrogen Evolution through Electronic Structure and Wettability Adjustment of ZnIn2S4/Bi2O3 S-Scheme Heterojunction. Acta Physico-Chimica Sinica, 2024, 40(8): 2308036-0. doi: 10.3866/PKU.WHXB202308036

    16. [16]

      Guoqiang ChenZixuan ZhengWei ZhongGuohong WangXinhe Wu . Molten Intermediate Transportation-Oriented Synthesis of Amino-Rich g-C3N4 Nanosheets for Efficient Photocatalytic H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(11): 2406021-0. doi: 10.3866/PKU.WHXB202406021

    17. [17]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    18. [18]

      Yulian Hu Xin Zhou Xiaojun Han . A Virtual Simulation Experiment on the Design and Property Analysis of CO2 Reduction Photocatalyst. University Chemistry, 2025, 40(3): 30-35. doi: 10.12461/PKU.DXHX202403088

    19. [19]

      Ronghui LI . Photocatalysis performance of nitrogen-doped CeO2 thin films via ion beam-assisted deposition. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1123-1130. doi: 10.11862/CJIC.20240440

    20. [20]

      Jingzhuo TianChaohong GuanHaobin HuEnzhou LiuDongyuan Yang . Waste plastics promoted photocatalytic H2 evolution over S-scheme NiCr2O4/twinned-Cd0.5Zn0.5S homo-heterojunction. Acta Physico-Chimica Sinica, 2025, 41(6): 100068-0. doi: 10.1016/j.actphy.2025.100068

Metrics
  • PDF Downloads(26)
  • Abstract views(3690)
  • HTML views(1859)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return