Citation: CHEN Xin, GUI Ke-ting, GU Shao-chen. Catalytic denitration activity and sulfur resistance of modified siderite catalysts[J]. Journal of Fuel Chemistry and Technology, ;2019, 47(3): 370-377. shu

Catalytic denitration activity and sulfur resistance of modified siderite catalysts

  • Corresponding author: GUI Ke-ting, 101000477@seu.edu.cn
  • Received Date: 12 November 2018
    Revised Date: 4 January 2019

    Fund Project: The project was supported by the National Natural Science Foundation of China 51276039Environmental Protection Research Project of Jiangsu Province 2015008The project was supported by the National Natural Science Foundation of China (51276039) and Environmental Protection Research Project of Jiangsu Province (2015008)

Figures(10)

  • The siderite denitration catalysts modified by Ce and Zr were prepared by mixing and stirring method. The effects of Ce and Zr co-doping on the catalytic denitration performance and sulfur resistance of the catalyst were studied. The results show that the 3%Ce+3%Zr-doped siderite catalyst(Ce0.03/Zr0.03-siderite) has the highest catalytic denitration activity and good sulfur resistance. The catalytic denitration efficiency is above 92% in the temperature range of 180-330 ℃. Furthermore, the denitration efficiency is still more than 95% after introducing SO2 gas with a volume fraction of 0.01% for 8 h at 210 ℃. The characteristics of the catalyst, such as components, microporous structure and crystal phase were determined by XRF, BET, XRD, NH3-TPD, TG and other experimental means. The characterization results show that the doping of Ce and Zr can significantly improve the specific surface area and surface crystal dispersion of the catalyst, enhance the surface acidity of the catalyst, and promote the decomposition of ammonium sulfate on the catalyst surface; thus the modified siderite catalyst has an excellent low-temperature catalytic denitration activity and a good sulfur resistance.
  • 加载中
    1. [1]

      HU He-bing, WANG Mu-ye, WU Yong-min, HE Ming-zhong, ZHENG Jian-hua, QI Hai-dong. Pollution of nitrogen oxides and its treating method[J]. Environ Prot Sci, 2006,32(4):9-13.  

    2. [2]

      ZHANG Peng, YAO Qiang. Catalyst for flue gas denitrification by selective catalytic reduction[J]. Coal Convers, 2005,28(2):21-27.  

    3. [3]

      BUSCA G, LIETTI L, RAMIS G, BERTI F. Chemical and mechanistic aspects of the selective catalytic reduction of NOx by ammonia over oxide catalysts:A review[J]. Appl Catal B:Environ, 1998,18(1/2):1-36.  

    4. [4]

      ZHU Lin, WU Bi-jun, DUAN Yu-xiang, CAO Lin-yan, LIU Han-qiang, ZHAO Wei, CAO Li-li. Production and application status of scr flue gas denitration catalyst[J]. Electric Power, 2009,42(8):61-64. doi: 10.3969/j.issn.1004-9649.2009.08.015

    5. [5]

      LIU Fu-dong, SHAN Wen-po, SHI Xiao-yan, HE Wei. Vanadium-based catalysts for selective catalytic reduction of nox by NH3[J]. Prog Chem, 2012,24(4):445-455.  

    6. [6]

      DJERAD S, TIFOUTI L, CROCOLL M, WEISWEILER W. Effect of vanadia and tungsten loadings on the physical and chemical characteristics of V2O5WO3/TiO2 catalysts[J]. J Mol Catal A:Chem, 2004,208(1):257-265.  

    7. [7]

      YANG S, WANG C, LI J, YAN N. Low temperature selective catalytic reduction of NO with NH3, over Mn-Fe spinel:Performance, mechanism and kinetic study[J]. Appl Catal B:Environ, 2011,110(41):71-80.  

    8. [8]

      XIONG Zhi-bo, GUO Dong-xu, LU Chun-mei, ZHANG Xin-li. Kinetics of SCR denitration reaction of iron oxide composite oxide catalysts[J]. J Fuel Chem Technol, 2013,41(4):506-512. doi: 10.3969/j.issn.0253-2409.2013.04.018 

    9. [9]

      HUANG Tian-jiao, ZHANG Ya-ping, ZHUANG Ke, LU Bin, ZHU Yi-wen, SHEN Kai. Preparation of honeycomb Ho modified Fe-Mn/TiO2 catalyst and its low temperature selective catalytic reduction (SCR) denitrification performance[J]. J Fuel Chem Technol, 2018,46(3):319-327. doi: 10.3969/j.issn.0253-2409.2018.03.009 

    10. [10]

      CAO F, SU S, XIANG J, WANG P, HU S, SUN L, ZHANG A. The activity and mechanism study of Fe-Mn-Ce/γ-Al2O3 catalyst for low temperature selective catalytic reduction of NO with NH3[J]. Fuel, 2015,139(2):232-239.  

    11. [11]

      IWASAKI M, YAMAZAKI K, BANNO K, SHINJOH H. Characterization of Fe/ZSM-5 DeNOx catalysts prepared by different methods:Relationships between active Fe sites and NH3-SCR performance[J]. J Catal, 2008,260(2):205-216. doi: 10.1016/j.jcat.2008.10.009

    12. [12]

      GAO F, ZHENG Y, KUKKADAPU R, WANG L, WALTER E, SCHWENZER B, SZANYI J, PEDEN C. Iron loading effects in Fe/SSZ-13 NH3-SCR catalysts:Nature of the Fe ions and structure-function relationships[J]. ACS Catal, 2016,6(5):2939-2954. doi: 10.1021/acscatal.6b00647

    13. [13]

      LU Hui-xia, GUI Ke-ting. Modification of iron ore SCR low temperature denitration catalyst[J]. Chin J Power Eng, 2017,37(9):726-731.  

    14. [14]

      ZHAI Xian-bin, GUI Ke-ting. Study on the low temperature catalytic desorption performance of iron[J]. J Eng Therm, 2015,36(4):811-815.  

    15. [15]

      WANG Rui, GUI Ke-ting, LIANG Hui. Preparation of La(1-x)CexMnO3/hematite catalyst and denitration characteristics of low temperature SCR[J]. J Southeast Univ, 2016,46(6):1234-1239.  

    16. [16]

      LU Hui-xia. Preparation and modification of low temperature SCR denitration catalyst for siderite/manganese iron[D]. Nanjing: Southeast University, 2017. 

    17. [17]

      LIANG Hui, GUI Ke-ting, CAI Sen. Study on denitrification performance of low temperature NH3-SCR in siderite[C]//Proceedings of Multiphase Flow Conference of China Engineering Thermophysics Society, Guangzhou, 2016.

    18. [18]

      SHEN B, WANG Y, WANG F, LIU T. The effect of Ce-Zr on NH3-SCR activity over MNOx(0.6)/Ce0.5Zr0.5O2 at low temperature[J]. Chem Eng J, 2014,236(2):171-180.  

    19. [19]

      ZHANG R, TEOH W Y, AMAL R, CHEN B, KALIAGUIN S. Catalytic reduction of NO by CO over Cu/CexZr1-xO2 prepared by flame synthesis[J]. J Catal, 2010,272(2):210-219. doi: 10.1016/j.jcat.2010.04.001

    20. [20]

      ZHANG L, LI L, CAO Y, YAO X, GE C, GAO F, DENG Y. Getting insight into the influence of SO2 on TiO2/CeO2 for the selective catalytic reduction of NO by NH3[J]. Appl Catal B:Environ, 2015,165:589-598. doi: 10.1016/j.apcatb.2014.10.029

    21. [21]

      JIN Q, SHEN Y, ZHU S. Effect of fluorine additive on CeO2(ZrO2)/TiO2 for selective catalytic reduction of NO by NH3[J]. J Colloid Interf Sci, 2017,487(11):401-409.  

    22. [22]

      HUANG Wei, TONG Zhi-quan, WU Bin, ZHANG Jun-feng. Selective catalytic reduction of NO by low temperature ammonia over V2O5-CeO2/TiO2 catalyst[J]. J Fuel Chem Technol, 2008,36(5):616-620. doi: 10.3969/j.issn.0253-2409.2008.05.019

    23. [23]

      SHEN Bo-xiong, SHI Zhan-liang, SHI Jian-wei, YANG Ting-ting, ZHAO Ning. Denitrification of low temperature SCR based on Mn-CeOx/ACFN[J]. Chem Ind Eng Prog, 2008,27(1):87-91. doi: 10.3321/j.issn:1000-6613.2008.01.017

    24. [24]

      LIN Tao, LI Wei, GONG Mao-chu, YU Yao, DU Bo, CHEN Yao-qiang. Preparation of ZrO2-TiO2-CeO2 and its application in selective catalytic reduction of NO by NH3[J]. Acta Phys Chim Sin, 2007,23(12):1851-1856.  

    25. [25]

      YAN Zhi-yong, HU Jian-fei, XU Hong. Study on denitration performance of CeO2/TiO2-ZrO2 catalyst with high water resistance and sulfur resistance[J]. Chin J Power Eng, 2011,31(1):58-63.  

    26. [26]

      BIN Feng. Modified molecular sieve materials for selective catalytic reduction of nitrogen oxides in diesel engines[D]. Tianjin: Tianjin University, 2011.

    27. [27]

      LIANG C, JUNHUA L, MAOFA G, LI M, CHANG H. Mechanism of selective catalytic reduction of NOx with NH over CeO-WO catalysts[J]. Chin J Catal, 2011,32(5):836-841. doi: 10.1016/S1872-2067(10)60195-7

    28. [28]

      JIN R, YUE L, YAN W, CEN W, WU Z, WANG H, WENG X. The role of cerium in the improved SO2 tolerance for NO reduction with NH3 over Mn-Ce/TiO2 catalyst at low temperature[J]. Appl Catal B:Environ, 2014,148(4):582-588.  

    29. [29]

      YANG Jian, LIN Fan, CHEN Kui, KONG Ming, ZHAO Dong, MENG Fei. Activity and SO2 deactivation mechanism of vanadium series catalyst containing cerium[J]. J Fuel Chem Technol, 2016,44(11):1394-1400. doi: 10.3969/j.issn.0253-2409.2016.11.017 

    30. [30]

      XU W, HE H, YU Y. Deactivation of a Ce/TiO2 catalyst by SO2 in the selective catalytic reduction of NO by NH3[J]. J Phys Chem C, 2009,113(11):4426-4432. doi: 10.1021/jp8088148

  • 加载中
    1. [1]

      Shipeng WANGShangyu XIELuxian LIANGXuehong WANGJie WEIDeqiang WANG . Piezoelectric effect of Mn, Bi co-doped sodium niobate for promoting cell proliferation and bacteriostasis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1919-1931. doi: 10.11862/CJIC.20240094

    2. [2]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    3. [3]

      Weikang Wang Yadong Wu Jianjun Zhang Kai Meng Jinhe Li Lele Wang Qinqin Liu . 三聚氰胺泡沫支撑的S型硫铟锌镉/硫掺杂氮化碳异质结的绿色H2O2合成:协同界面电荷转移调控与局域光热效应. Acta Physico-Chimica Sinica, 2025, 41(8): 100093-. doi: 10.1016/j.actphy.2025.100093

    4. [4]

      Xin XIONGQian CHENQuan XIE . First principles study of the photoelectric properties and magnetism of La and Yb doped AlN. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1519-1527. doi: 10.11862/CJIC.20240064

    5. [5]

      Yadan Luo Hao Zheng Xin Li Fengmin Li Hua Tang Xilin She . Modulating reactive oxygen species in O, S co-doped C3N4 to enhance photocatalytic degradation of microplastics. Acta Physico-Chimica Sinica, 2025, 41(6): 100052-. doi: 10.1016/j.actphy.2025.100052

    6. [6]

      Jin CHANG . Supercapacitor performance and first-principles calculation study of Co-doping Ni(OH)2. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1697-1707. doi: 10.11862/CJIC.20240108

    7. [7]

      Feibin WeiYongfang RaoYu HuangWei WangHui Mei . The new challenges for the development of NH3-SCR catalysts under new situation of energy transition in power generation industry. Chinese Chemical Letters, 2024, 35(6): 108931-. doi: 10.1016/j.cclet.2023.108931

    8. [8]

      Jun Huang Pengfei Nie Yongchao Lu Jiayang Li Yiwen Wang Jianyun Liu . 丝光沸石负载自支撑氮掺杂多孔碳纳米纤维电容器及高效选择性去除硬度离子. Acta Physico-Chimica Sinica, 2025, 41(7): 100066-. doi: 10.1016/j.actphy.2025.100066

    9. [9]

      Zhongyan Cao Youzhi Xu Menghua Li Xiao Xiao Xianqiang Kong Deyun Qian . Electrochemically Driven Denitrative Borylation and Fluorosulfonylation of Nitroarenes. University Chemistry, 2025, 40(4): 277-281. doi: 10.12461/PKU.DXHX202407017

    10. [10]

      Weihan Zhang Menglu Wang Ankang Jia Wei Deng Shuxing Bai . 表面硫物种对钯-硫纳米片加氢性能的影响. Acta Physico-Chimica Sinica, 2024, 40(11): 2309043-. doi: 10.3866/PKU.WHXB202309043

    11. [11]

      Ping Song Nan Zhang Jie Wang Rui Yan Zhiqiang Wang Yingxue Jin . Experimental Teaching Design on Synthesis and Antitumor Activity Study of Cu-Pyropheophorbide-a Methyl Ester. University Chemistry, 2024, 39(6): 278-286. doi: 10.3866/PKU.DXHX202310087

    12. [12]

      Hongyao Li Youyan Liu Luwei Dai Min Yang Qihui Wang . The Blessing of Indium Sulfide:Confronting the Narrow Path with Uric Acid. University Chemistry, 2024, 39(5): 325-335. doi: 10.3866/PKU.DXHX202311104

    13. [13]

      Ruiqing LIUWenxiu LIUKun XIEYiran LIUHui CHENGXiaoyu WANGChenxu TIANXiujing LINXiaomiao FENG . Three-dimensional porous titanium nitride as a highly efficient sulfur host. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 867-876. doi: 10.11862/CJIC.20230441

    14. [14]

      Jinyao Du Xingchao Zang Ningning Xu Yongjun Liu Weisi Guo . Electrochemical Thiocyanation of 4-Bromoethylbenzene. University Chemistry, 2024, 39(6): 312-317. doi: 10.3866/PKU.DXHX202310039

    15. [15]

      Bin HEHao ZHANGLin XUYanghe LIUFeifan LANGJiandong PANG . Recent progress in multicomponent zirconium?based metal-organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2041-2062. doi: 10.11862/CJIC.20240161

    16. [16]

      Lei Shi . Nucleophilicity and Electrophilicity of Radicals. University Chemistry, 2024, 39(11): 131-135. doi: 10.3866/PKU.DXHX202402018

    17. [17]

      Yuan GAOYiming LIUChunhui WANGZhe HANChaoyue FANJie QIU . A hexanuclear cerium oxo cluster stabilized by furoate: Synthesis, structure, and remarkable ability to scavenge hydroxyl radicals. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 491-498. doi: 10.11862/CJIC.20240271

    18. [18]

      Yiming Liang Ziyan Pan Kin Shing Chan . One Drink, Two Tears in the Central Nervous System: The Perils of Disulfiram-Like Reactions. University Chemistry, 2025, 40(4): 322-325. doi: 10.12461/PKU.DXHX202406016

    19. [19]

      Yingtong Shi Guotong Xu Guizeng Liang Di Lan Siyuan Zhang Yanru Wang Daohao Li Guanglei Wu . PEG-VN改性PP隔膜用于高稳定性高效率锂硫电池. Acta Physico-Chimica Sinica, 2025, 41(7): 100082-. doi: 10.1016/j.actphy.2025.100082

    20. [20]

      Wenjie SHIFan LUMengwei CHENJin WANGYingfeng HAN . Synthesis and host-guest properties of imidazolium-functionalized zirconium metal-organic cage. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 105-113. doi: 10.11862/CJIC.20240360

Metrics
  • PDF Downloads(6)
  • Abstract views(1048)
  • HTML views(156)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return