Citation: CHEN Xin, GUI Ke-ting, GU Shao-chen. Catalytic denitration activity and sulfur resistance of modified siderite catalysts[J]. Journal of Fuel Chemistry and Technology, ;2019, 47(3): 370-377. shu

Catalytic denitration activity and sulfur resistance of modified siderite catalysts

  • Corresponding author: GUI Ke-ting, 101000477@seu.edu.cn
  • Received Date: 12 November 2018
    Revised Date: 4 January 2019

    Fund Project: The project was supported by the National Natural Science Foundation of China 51276039Environmental Protection Research Project of Jiangsu Province 2015008The project was supported by the National Natural Science Foundation of China (51276039) and Environmental Protection Research Project of Jiangsu Province (2015008)

Figures(10)

  • The siderite denitration catalysts modified by Ce and Zr were prepared by mixing and stirring method. The effects of Ce and Zr co-doping on the catalytic denitration performance and sulfur resistance of the catalyst were studied. The results show that the 3%Ce+3%Zr-doped siderite catalyst(Ce0.03/Zr0.03-siderite) has the highest catalytic denitration activity and good sulfur resistance. The catalytic denitration efficiency is above 92% in the temperature range of 180-330 ℃. Furthermore, the denitration efficiency is still more than 95% after introducing SO2 gas with a volume fraction of 0.01% for 8 h at 210 ℃. The characteristics of the catalyst, such as components, microporous structure and crystal phase were determined by XRF, BET, XRD, NH3-TPD, TG and other experimental means. The characterization results show that the doping of Ce and Zr can significantly improve the specific surface area and surface crystal dispersion of the catalyst, enhance the surface acidity of the catalyst, and promote the decomposition of ammonium sulfate on the catalyst surface; thus the modified siderite catalyst has an excellent low-temperature catalytic denitration activity and a good sulfur resistance.
  • 加载中
    1. [1]

      HU He-bing, WANG Mu-ye, WU Yong-min, HE Ming-zhong, ZHENG Jian-hua, QI Hai-dong. Pollution of nitrogen oxides and its treating method[J]. Environ Prot Sci, 2006,32(4):9-13.  

    2. [2]

      ZHANG Peng, YAO Qiang. Catalyst for flue gas denitrification by selective catalytic reduction[J]. Coal Convers, 2005,28(2):21-27.  

    3. [3]

      BUSCA G, LIETTI L, RAMIS G, BERTI F. Chemical and mechanistic aspects of the selective catalytic reduction of NOx by ammonia over oxide catalysts:A review[J]. Appl Catal B:Environ, 1998,18(1/2):1-36.  

    4. [4]

      ZHU Lin, WU Bi-jun, DUAN Yu-xiang, CAO Lin-yan, LIU Han-qiang, ZHAO Wei, CAO Li-li. Production and application status of scr flue gas denitration catalyst[J]. Electric Power, 2009,42(8):61-64. doi: 10.3969/j.issn.1004-9649.2009.08.015

    5. [5]

      LIU Fu-dong, SHAN Wen-po, SHI Xiao-yan, HE Wei. Vanadium-based catalysts for selective catalytic reduction of nox by NH3[J]. Prog Chem, 2012,24(4):445-455.  

    6. [6]

      DJERAD S, TIFOUTI L, CROCOLL M, WEISWEILER W. Effect of vanadia and tungsten loadings on the physical and chemical characteristics of V2O5WO3/TiO2 catalysts[J]. J Mol Catal A:Chem, 2004,208(1):257-265.  

    7. [7]

      YANG S, WANG C, LI J, YAN N. Low temperature selective catalytic reduction of NO with NH3, over Mn-Fe spinel:Performance, mechanism and kinetic study[J]. Appl Catal B:Environ, 2011,110(41):71-80.  

    8. [8]

      XIONG Zhi-bo, GUO Dong-xu, LU Chun-mei, ZHANG Xin-li. Kinetics of SCR denitration reaction of iron oxide composite oxide catalysts[J]. J Fuel Chem Technol, 2013,41(4):506-512. doi: 10.3969/j.issn.0253-2409.2013.04.018 

    9. [9]

      HUANG Tian-jiao, ZHANG Ya-ping, ZHUANG Ke, LU Bin, ZHU Yi-wen, SHEN Kai. Preparation of honeycomb Ho modified Fe-Mn/TiO2 catalyst and its low temperature selective catalytic reduction (SCR) denitrification performance[J]. J Fuel Chem Technol, 2018,46(3):319-327. doi: 10.3969/j.issn.0253-2409.2018.03.009 

    10. [10]

      CAO F, SU S, XIANG J, WANG P, HU S, SUN L, ZHANG A. The activity and mechanism study of Fe-Mn-Ce/γ-Al2O3 catalyst for low temperature selective catalytic reduction of NO with NH3[J]. Fuel, 2015,139(2):232-239.  

    11. [11]

      IWASAKI M, YAMAZAKI K, BANNO K, SHINJOH H. Characterization of Fe/ZSM-5 DeNOx catalysts prepared by different methods:Relationships between active Fe sites and NH3-SCR performance[J]. J Catal, 2008,260(2):205-216. doi: 10.1016/j.jcat.2008.10.009

    12. [12]

      GAO F, ZHENG Y, KUKKADAPU R, WANG L, WALTER E, SCHWENZER B, SZANYI J, PEDEN C. Iron loading effects in Fe/SSZ-13 NH3-SCR catalysts:Nature of the Fe ions and structure-function relationships[J]. ACS Catal, 2016,6(5):2939-2954. doi: 10.1021/acscatal.6b00647

    13. [13]

      LU Hui-xia, GUI Ke-ting. Modification of iron ore SCR low temperature denitration catalyst[J]. Chin J Power Eng, 2017,37(9):726-731.  

    14. [14]

      ZHAI Xian-bin, GUI Ke-ting. Study on the low temperature catalytic desorption performance of iron[J]. J Eng Therm, 2015,36(4):811-815.  

    15. [15]

      WANG Rui, GUI Ke-ting, LIANG Hui. Preparation of La(1-x)CexMnO3/hematite catalyst and denitration characteristics of low temperature SCR[J]. J Southeast Univ, 2016,46(6):1234-1239.  

    16. [16]

      LU Hui-xia. Preparation and modification of low temperature SCR denitration catalyst for siderite/manganese iron[D]. Nanjing: Southeast University, 2017. 

    17. [17]

      LIANG Hui, GUI Ke-ting, CAI Sen. Study on denitrification performance of low temperature NH3-SCR in siderite[C]//Proceedings of Multiphase Flow Conference of China Engineering Thermophysics Society, Guangzhou, 2016.

    18. [18]

      SHEN B, WANG Y, WANG F, LIU T. The effect of Ce-Zr on NH3-SCR activity over MNOx(0.6)/Ce0.5Zr0.5O2 at low temperature[J]. Chem Eng J, 2014,236(2):171-180.  

    19. [19]

      ZHANG R, TEOH W Y, AMAL R, CHEN B, KALIAGUIN S. Catalytic reduction of NO by CO over Cu/CexZr1-xO2 prepared by flame synthesis[J]. J Catal, 2010,272(2):210-219. doi: 10.1016/j.jcat.2010.04.001

    20. [20]

      ZHANG L, LI L, CAO Y, YAO X, GE C, GAO F, DENG Y. Getting insight into the influence of SO2 on TiO2/CeO2 for the selective catalytic reduction of NO by NH3[J]. Appl Catal B:Environ, 2015,165:589-598. doi: 10.1016/j.apcatb.2014.10.029

    21. [21]

      JIN Q, SHEN Y, ZHU S. Effect of fluorine additive on CeO2(ZrO2)/TiO2 for selective catalytic reduction of NO by NH3[J]. J Colloid Interf Sci, 2017,487(11):401-409.  

    22. [22]

      HUANG Wei, TONG Zhi-quan, WU Bin, ZHANG Jun-feng. Selective catalytic reduction of NO by low temperature ammonia over V2O5-CeO2/TiO2 catalyst[J]. J Fuel Chem Technol, 2008,36(5):616-620. doi: 10.3969/j.issn.0253-2409.2008.05.019

    23. [23]

      SHEN Bo-xiong, SHI Zhan-liang, SHI Jian-wei, YANG Ting-ting, ZHAO Ning. Denitrification of low temperature SCR based on Mn-CeOx/ACFN[J]. Chem Ind Eng Prog, 2008,27(1):87-91. doi: 10.3321/j.issn:1000-6613.2008.01.017

    24. [24]

      LIN Tao, LI Wei, GONG Mao-chu, YU Yao, DU Bo, CHEN Yao-qiang. Preparation of ZrO2-TiO2-CeO2 and its application in selective catalytic reduction of NO by NH3[J]. Acta Phys Chim Sin, 2007,23(12):1851-1856.  

    25. [25]

      YAN Zhi-yong, HU Jian-fei, XU Hong. Study on denitration performance of CeO2/TiO2-ZrO2 catalyst with high water resistance and sulfur resistance[J]. Chin J Power Eng, 2011,31(1):58-63.  

    26. [26]

      BIN Feng. Modified molecular sieve materials for selective catalytic reduction of nitrogen oxides in diesel engines[D]. Tianjin: Tianjin University, 2011.

    27. [27]

      LIANG C, JUNHUA L, MAOFA G, LI M, CHANG H. Mechanism of selective catalytic reduction of NOx with NH over CeO-WO catalysts[J]. Chin J Catal, 2011,32(5):836-841. doi: 10.1016/S1872-2067(10)60195-7

    28. [28]

      JIN R, YUE L, YAN W, CEN W, WU Z, WANG H, WENG X. The role of cerium in the improved SO2 tolerance for NO reduction with NH3 over Mn-Ce/TiO2 catalyst at low temperature[J]. Appl Catal B:Environ, 2014,148(4):582-588.  

    29. [29]

      YANG Jian, LIN Fan, CHEN Kui, KONG Ming, ZHAO Dong, MENG Fei. Activity and SO2 deactivation mechanism of vanadium series catalyst containing cerium[J]. J Fuel Chem Technol, 2016,44(11):1394-1400. doi: 10.3969/j.issn.0253-2409.2016.11.017 

    30. [30]

      XU W, HE H, YU Y. Deactivation of a Ce/TiO2 catalyst by SO2 in the selective catalytic reduction of NO by NH3[J]. J Phys Chem C, 2009,113(11):4426-4432. doi: 10.1021/jp8088148

  • 加载中
    1. [1]

      Shipeng WANGShangyu XIELuxian LIANGXuehong WANGJie WEIDeqiang WANG . Piezoelectric effect of Mn, Bi co-doped sodium niobate for promoting cell proliferation and bacteriostasis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1919-1931. doi: 10.11862/CJIC.20240094

    2. [2]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    3. [3]

      Xue XiaoJiachun LiXiangtong MengJieshan Qiu . Sulfur-Doped Carbon-Coated Fe0.95S1.05 Nanospheres as Anodes for High-Performance Sodium Storage. Acta Physico-Chimica Sinica, 2024, 40(6): 2307006-0. doi: 10.3866/PKU.WHXB202307006

    4. [4]

      Weikang WangYadong WuJianjun ZhangKai MengJinhe LiLele WangQinqin Liu . Green H2O2 synthesis via melamine-foam supported S-scheme Cd0.5Zn0.5In2S4/S-doped carbon nitride heterojunction: synergistic interfacial charge transfer and local photothermal effect. Acta Physico-Chimica Sinica, 2025, 41(8): 100093-0. doi: 10.1016/j.actphy.2025.100093

    5. [5]

      Xin XIONGQian CHENQuan XIE . First principles study of the photoelectric properties and magnetism of La and Yb doped AlN. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1519-1527. doi: 10.11862/CJIC.20240064

    6. [6]

      Yadan LuoHao ZhengXin LiFengmin LiHua TangXilin She . Modulating reactive oxygen species in O, S co-doped C3N4 to enhance photocatalytic degradation of microplastics. Acta Physico-Chimica Sinica, 2025, 41(6): 100052-0. doi: 10.1016/j.actphy.2025.100052

    7. [7]

      Qianli MaTianbing SongTianle HeXirong ZhangHuanming Xiong . Sulfur-doped carbon dots: a novel bifunctional electrolyte additive for high-performance aqueous zinc-ion batteries. Acta Physico-Chimica Sinica, 2025, 41(9): 100106-0. doi: 10.1016/j.actphy.2025.100106

    8. [8]

      Jin CHANG . Supercapacitor performance and first-principles calculation study of Co-doping Ni(OH)2. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1697-1707. doi: 10.11862/CJIC.20240108

    9. [9]

      Feibin WeiYongfang RaoYu HuangWei WangHui Mei . The new challenges for the development of NH3-SCR catalysts under new situation of energy transition in power generation industry. Chinese Chemical Letters, 2024, 35(6): 108931-. doi: 10.1016/j.cclet.2023.108931

    10. [10]

      Tao WangQin DongCunpu LiZidong Wei . Sulfur Cathode Electrocatalysis in Lithium-Sulfur Batteries: A Comprehensive Understanding. Acta Physico-Chimica Sinica, 2024, 40(2): 2303061-0. doi: 10.3866/PKU.WHXB202303061

    11. [11]

      Ximeng CHIJianwei WEIYunyun WANGWenxin DENGJiayi DAIXu ZHOU . First-principles study of the electronic structure and optical properties of Au and I doped-inorganic lead-free double perovskite Cs2NaBiCl6. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1371-1379. doi: 10.11862/CJIC.20240401

    12. [12]

      Jun HuangPengfei NieYongchao LuJiayang LiYiwen WangJianyun Liu . 丝光沸石负载自支撑氮掺杂多孔碳纳米纤维电容器及高效选择性去除硬度离子. Acta Physico-Chimica Sinica, 2025, 41(7): 100066-0. doi: 10.1016/j.actphy.2025.100066

    13. [13]

      Zhongyan Cao Youzhi Xu Menghua Li Xiao Xiao Xianqiang Kong Deyun Qian . Electrochemically Driven Denitrative Borylation and Fluorosulfonylation of Nitroarenes. University Chemistry, 2025, 40(4): 277-281. doi: 10.12461/PKU.DXHX202407017

    14. [14]

      Jianning ZhangYihuai ZhangGuoxin MaJingchen ZhaoTao ZhangJian Liu . Enhancing hydrothermal stability in Cu/SSZ-13 catalyst for diesel SCR applications through a novel core-shell structure. Chinese Chemical Letters, 2025, 36(7): 110516-. doi: 10.1016/j.cclet.2024.110516

    15. [15]

      Ping Song Nan Zhang Jie Wang Rui Yan Zhiqiang Wang Yingxue Jin . Experimental Teaching Design on Synthesis and Antitumor Activity Study of Cu-Pyropheophorbide-a Methyl Ester. University Chemistry, 2024, 39(6): 278-286. doi: 10.3866/PKU.DXHX202310087

    16. [16]

      Jianan Zhang Mengzhen Xu Jiamin Liu Yufei He . 面向“双碳”目标的脱氯吸附剂开发研究型综合实验设计. University Chemistry, 2025, 40(6): 248-255. doi: 10.12461/PKU.DXHX202408068

    17. [17]

      Weihan ZhangMenglu WangAnkang JiaWei DengShuxing Bai . Surface Sulfur Species Influence Hydrogenation Performance of Palladium-Sulfur Nanosheets. Acta Physico-Chimica Sinica, 2024, 40(11): 2309043-0. doi: 10.3866/PKU.WHXB202309043

    18. [18]

      Bin HEHao ZHANGLin XUYanghe LIUFeifan LANGJiandong PANG . Recent progress in multicomponent zirconium?based metal-organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2041-2062. doi: 10.11862/CJIC.20240161

    19. [19]

      Hongyao Li Youyan Liu Luwei Dai Min Yang Qihui Wang . The Blessing of Indium Sulfide:Confronting the Narrow Path with Uric Acid. University Chemistry, 2024, 39(5): 325-335. doi: 10.3866/PKU.DXHX202311104

    20. [20]

      Lei Shi . Nucleophilicity and Electrophilicity of Radicals. University Chemistry, 2024, 39(11): 131-135. doi: 10.3866/PKU.DXHX202402018

Metrics
  • PDF Downloads(6)
  • Abstract views(1071)
  • HTML views(163)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return