Citation: XING Chen. Preparation of H4SiW12O40/Bi2WO6 nano-photocatalyst by supercritical hydrothermal synthesis and its photocatalysis denitrification performance[J]. Journal of Fuel Chemistry and Technology, ;2020, 48(3): 378-384. shu

Preparation of H4SiW12O40/Bi2WO6 nano-photocatalyst by supercritical hydrothermal synthesis and its photocatalysis denitrification performance

Figures(9)

  • An immobilized nano-photocatalyst H4SiW12O40/Bi2WO6 was quickly prepared by the supercritical hydrothermal synthesis method. The properties, morphology and structure of the prepared catalysts were investigated and characterized by X-ray diffraction(XRD), scanning electron microscopy(SEM), and transmission electron microscope (TEM) and BET, respectively. The photocatalytic denitrification properties were evaluated by using the model oil with 15 mg/g pyridine. The results show that the photocatalyst is the self-assembly three-dimensional spherical structure by two-dimensional nano-flakes, and the relationship between Bi2WO6 and H4SiW12O40 is not a simple solid loading, but is a new crystal under the condition of supercritical water. It is because the existence of this kind of crystal that the H4SiW12O40 is firmly fixed on the Bi2WO6 photocatalyst and the photocatalytic activity and service life of H4SiW12O40/Bi2WO6 photocatalyst are improved. In view of the contradiction between the preparation period of photocatalyst and the crystal development, the supercritical hydrothermal technology and the photocatalyst template-oriented synthesis technology are organically combined to obtain the H4SiW12O40/Bi2WO6 photocatalyst with good crystal heterostructure and greatly shorten the preparation period of the photocatalyst, greatly reduce the preparation cost of the catalyst and overcome the main contradiction of the industrialized application of the photocatalyst. The nitrogen removal efficiency of the prepared H4SiW12O40/Bi2WO6 photocatalyst for light oil is as high as 97%.
  • 加载中
    1. [1]

      FUJISHIMA A, HONDA K. Electrochemical photolysis of water at a semiconductor electrode[J]. Nature, 1972,238(5358):37-38. doi: 10.1038/238037a0

    2. [2]

      TANTIS I, BOUSIAKOU L, KARIKAS G A, LIANOS P. Photocatalytic and hotoelectrocatalytic degradation of the antibacterial agent ciprofloxacin[J]. Photochem Photobiol Sci, 2015,14(3):603-607. doi: 10.1039/C4PP00377B

    3. [3]

      CARMONA R J, VELASCO L F, HIDALGO M C, NAVÍO J A, ANIA C O. Boosting the visible-light photoactivity of Bi2WO6 using acidic carbon additives[J]. Appl Catal A:Gen, 2015,505:467-477. doi: 10.1016/j.apcata.2015.05.011

    4. [4]

      TROVO A G, NOGUEIRA R F, AGUERA A, FERNANDEZ-ALBA A R, MALATO S. Degradation of the antibiotic amoxicillin by photo-Fenton process-chemical and toxicological assessment[J]. Water Res, 2011,45(3):1394-1402.  

    5. [5]

      XUE J, MA S, ZHOU Y, ZHANG Z, HE M. Facile photochemical synthesis of Au/Pt/gC3N4 with plasmon-enhanced photocatalytic activity for antibiotic aegradation[J]. ACS Appl Mater Inter, 2015,7(18):9630-9637.

    6. [6]

      LIU G, HAN K, YE H, ZHU C, GAO Y, LIU Y, ZHOU Y. Graphene oxide/triethanolamine modified titanate nanowires as photocatalytic membrane for water treatment[J]. Chem Eng J, 2017,320:74-80.  

    7. [7]

      WANG X, NI Q, ZENG D, LIAO G, XIE C. Charge separation in branched TiO2 nanorod array homojunction aroused by quantum effect for enhanced photocatalytic decomposition of gaseous benzene[J]. Appl Surf Sci, 2016,389:165-172. doi: 10.1016/j.apsusc.2016.07.090

    8. [8]

      HOA P T, MANAGAKI S, NAKADA N, TAKADA H, SHIMIZU A, ANH D H, VIET P H, SUZUKI S. Antibiotic contamination and occurrence of antibiotic-resistant bacteria in aquatic environments of northern Vietnam[J]. Sci Total Environ, 2011,409(15):2894-2901.  

    9. [9]

      WANG J, TANG L, ZENG G, DENG Y, LIU Y, WANG L. Atomic scale g-C3N4/Bi2WO6 2D/2D heterojunction with enhanced photocatalytic degradation of ibuprofen under visible light irradiation[J]. Appl Catal B:Environ, 2017,209:285-294. doi: 10.1016/j.apcatb.2017.03.019

    10. [10]

      MENG X, ZHANG Z. Plasmonic Z-scheme Ag2O-Bi2MoO6 p-n heterojunction photocatalysts with greatly enhanced visible-light responsive activities[J]. Mater Lett, 2017,189:267-270. doi: 10.1016/j.matlet.2016.11.114

    11. [11]

      MENG X, ZHANG Z. Bi2MoO6 co-modified by reduced graphene oxide and palladium(Pd2+ and Pd0) with enhanced photocatalytic decomposition of phenol[J]. Appl Catal B:Environ, 2017,209:383-393. doi: 10.1016/j.apcatb.2017.01.033

    12. [12]

      ZHOU X, GAN L, ZHANG Q, XIONG X, LI H, ZHONG Z. High performance near-infrared photodetectors based on ultrathin SnS nanobelts grown via physical vapor deposition[J]. J Mater Chem C, 2016:2111-2116.  

    13. [13]

      MENG X, LI Z, ZENG H, CHEN J, ZHANG Z. MoS2 quantum dots-interspersed Bi2WO6 heterostructures for visible light-induced detoxification and disinfection[J]. Appl Catal B:Environ, 2017,210:160-172.  

    14. [14]

      CHEN D, NIU F, QIN L, WANG S, ZHANG N, HUANG Y. Defective BiFeO3 with surface oxygen vacancies:Facile synthesis and mechanism insight into photocatalytic performance[J]. Sol Energy Mater Sol Cells, 2017,171:24-32. doi: 10.1016/j.solmat.2017.06.021

    15. [15]

      WANG S, HAI X, DING X, CHANG K, XIANG Y, MENG X, YANG Z, CHEN H, YE J. Light-switchable oxygen vacancies in ultrafine Bi5O7Br nanotubes for boosting solar-driven nitrogen fixation in pure water[J]. Adv Mater, 2017,29(31)1101774.  

    16. [16]

      MENG X, ZHANG Z. Ag/AgCl loaded Bi2WO6 composite:A plasmonic Z-scheme visible light-responsive photocatalyst[J]. Int J Photoenergy, 2016:1-11.  

    17. [17]

      LIU X, LU Q, LIU J. Electrospinning preparation of one-dimensional ZnO/Bi2WO6, heterostructured sub-microbelts with excellent photocatalytic performance[J]. J Alloy Compd, 2016,662:598-606. doi: 10.1016/j.jallcom.2015.12.050

    18. [18]

      SONG C, WANG X, ZHANG J, CHEN X, LI C. Enhanced performance of direct zscheme CuS-WO3 system towards photocatalytic decomposition of organic pollutants under visible light[J]. Appl Surf Sci, 2017,425:788-795. doi: 10.1016/j.apsusc.2017.07.082

    19. [19]

      HUANG Y, KANG S, YANG Y, QIN H, NI Z, YANG S. Facile synthesis of Bi/Bi2WO6 nanocomposite with enhanced photocatalytic activity under visible light[J]. Appl Catal B:Environ, 2016,196:89-99. doi: 10.1016/j.apcatb.2016.05.022

    20. [20]

      MENG X, ZHANG Z. Synthesis and characterization of plasmonic and magnetically separable Ag/AgCl-Bi2WO6-Fe3O4-SiO2 core-shell composites for visible light-induced water detoxification[J]. J Colloid Interf Sci, 2017,485:296-307.  

    21. [21]

      LIU Yang, JI Hong-wei, ZHOU De-feng, ZHU Xiao-fei, LI Zhao-hui. Controllable synthesis and photocatalytic activity of TiO2/LaFeO3 micro-nanofibers[J]. Chem J Chin Univ, 2014,35(1):19-25.  

    22. [22]

      LITKE A, HENSEN E J M, HOFMANN J P. Role of dissociatively adsorbed water on the formation of shallow trapped electrons in TiO2 photocatalysts[J]. J Chem Phys, 2017,121:10153-10162.  

    23. [23]

      JARAMILLO-PÁEZ C, NAVÍO J A, HIDALGO M C, BOUZIANI A, AZZOUZI M E. Mixed α-Fe2O3/Bi2WO6 oxides for photoassisted hetero-fenton degradation of methyl orange and phenol[J]. J Photochem Photobiol A, 2017,332:521-533. doi: 10.1016/j.jphotochem.2016.09.031

    24. [24]

      MENG X, ZHANG Z. Pd-doped Bi2MoO6 plasmonic photocatalysts with enhanced visible light photocatalytic performance[J]. Appl Surf Sci, 2017,392:169-180. doi: 10.1016/j.apsusc.2016.08.113

    25. [25]

      SH/T 0162-1992, Method for the determination of basic nitrogen in petroleum products[S]. Sinopec Group, 1992.

    26. [26]

      CHEN Ying, XING Chen, JI Shen-lun, LIANG Hong-bao. One-step preparation of H3PW12O40/Bi2WO6 nano-photocatalysts by microwave liquid process and its photocatalysis denitrification properties[J]. Chem J Chin Univ, 2014,35(6):1277-1285.  

    27. [27]

      ZHOU L, WANG W Z, ZHANG L S. Ultrasonic-assisted synthesis of visible-light-indyced Bi2MO6(M=W, Mo)[J]. J Mol Catal A:Chem, 2007,268:195-200. doi: 10.1016/j.molcata.2006.12.026

    28. [28]

      TANG J W, ZOU Z G, YE J H. Photophysical and photocatalytic properties of AgInW2O8[J]. Phys Inorg Chem, 2004,35(10).  

    29. [29]

      OZER R R, FERRY J L. Investigation of the photocatalytic activity of TiO2-polyoxometalate systems[J]. Environ Sci Technol, 2001,35(15):3242-3246. doi: 10.1021/es0106568

  • 加载中
    1. [1]

      Ke LiChuang LiuJingping LiGuohong WangKai Wang . Architecting Inorganic/Organic S-Scheme Heterojunction of Bi4Ti3O12 Coupling with g-C3N4 for Photocatalytic H2O2 Production from Pure Water. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-0. doi: 10.3866/PKU.WHXB202403009

    2. [2]

      Haitao WangLianglang YuJizhou JiangArramelJing Zou . S-Doping of the N-Sites of g-C3N4 to Enhance Photocatalytic H2 Evolution Activity. Acta Physico-Chimica Sinica, 2024, 40(5): 2305047-0. doi: 10.3866/PKU.WHXB202305047

    3. [3]

      Yifan ZHAOQiyun MAOMeijing GUOGuoying ZHANGTongliang HU . Z-scheme bismuth-based multi-site heterojunction: Synthesis and hydrogen production from photocatalytic hydrogen production. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1318-1330. doi: 10.11862/CJIC.20250001

    4. [4]

      Yuanyin CuiJinfeng ZhangHailiang ChuLixian SunKai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-0. doi: 10.3866/PKU.WHXB202405016

    5. [5]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    6. [6]

      Ronghui LI . Photocatalysis performance of nitrogen-doped CeO2 thin films via ion beam-assisted deposition. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1123-1130. doi: 10.11862/CJIC.20240440

    7. [7]

      Xi YANGChunxiang CHANGYingpeng XIEYang LIYuhui CHENBorao WANGLudong YIZhonghao HAN . Co-catalyst Ni3N supported Al-doped SrTiO3: Synthesis and application to hydrogen evolution from photocatalytic water splitting. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 440-452. doi: 10.11862/CJIC.20240371

    8. [8]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    9. [9]

      Zijian Jiang Yuang Liu Yijian Zong Yong Fan Wanchun Zhu Yupeng Guo . Preparation of Nano Zinc Oxide by Microemulsion Method and Study on Its Photocatalytic Activity. University Chemistry, 2024, 39(5): 266-273. doi: 10.3866/PKU.DXHX202311101

    10. [10]

      Xia ZHANGYushi BAIXi CHANGHan ZHANGHaoyu ZHANGLiman PENGShushu HUANG . Preparation and photocatalytic degradation performance of rhodamine B of BiOCl/polyaniline. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 913-922. doi: 10.11862/CJIC.20240255

    11. [11]

      Jiajia Wang Sibo Huang Xijing Gao Chaoxun Liu Haibo Zhang . 光催化硝酸根还原产氨的综合实验设计. University Chemistry, 2025, 40(8): 241-248. doi: 10.12461/PKU.DXHX202410050

    12. [12]

      Wenxiu YangJinfeng ZhangQuanlong XuYun YangLijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-0. doi: 10.3866/PKU.WHXB202312014

    13. [13]

      Xuejiao WangSuiying DongKezhen QiVadim PopkovXianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-0. doi: 10.3866/PKU.WHXB202408005

    14. [14]

      Jianyin HeLiuyun ChenXinling XieZuzeng QinHongbing JiTongming Su . Construction of ZnCoP/CdLa2S4 Schottky Heterojunctions for Enhancing Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(11): 2404030-0. doi: 10.3866/PKU.WHXB202404030

    15. [15]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    16. [16]

      Jingyu Cai Xiaoyu Miao Yulai Zhao Longqiang Xiao . Exploratory Teaching Experiment Design of FeOOH-RGO Aerogel for Photocatalytic Benzene to Phenol. University Chemistry, 2024, 39(4): 169-177. doi: 10.3866/PKU.DXHX202311028

    17. [17]

      Yulian Hu Xin Zhou Xiaojun Han . A Virtual Simulation Experiment on the Design and Property Analysis of CO2 Reduction Photocatalyst. University Chemistry, 2025, 40(3): 30-35. doi: 10.12461/PKU.DXHX202403088

    18. [18]

      Zhiquan ZhangBaker RhimiZheyang LiuMin ZhouGuowei DengWei WeiLiang MaoHuaming LiZhifeng Jiang . Insights into the Development of Copper-Based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-0. doi: 10.3866/PKU.WHXB202406029

    19. [19]

      Xin Zhou Zhi Zhang Yun Yang Shuijin Yang . A Study on the Enhancement of Photocatalytic Performance in C/Bi/Bi2MoO6 Composites by Ferroelectric Polarization: A Recommended Comprehensive Chemical Experiment. University Chemistry, 2024, 39(4): 296-304. doi: 10.3866/PKU.DXHX202310008

    20. [20]

      Yingqi BAIHua ZHAOHuipeng LIXinran RENJun LI . Perovskite LaCoO3/g-C3N4 heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 480-490. doi: 10.11862/CJIC.20240259

Metrics
  • PDF Downloads(8)
  • Abstract views(815)
  • HTML views(154)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return