Citation: DAI Hui, HU Shi-ye, MU Lu-lu, WANG Biao, NING Wen-sheng. Effects of glucose and Pd on the structure and performance of cobalt-based catalyst for F-T synthesis[J]. Journal of Fuel Chemistry and Technology, ;2020, 48(4): 490-494. shu

Effects of glucose and Pd on the structure and performance of cobalt-based catalyst for F-T synthesis

  • Corresponding author: NING Wen-sheng, wenshning@sohu.com
  • Received Date: 9 January 2020
    Revised Date: 8 March 2020

    Fund Project: the Zhejiang Provincial Natural Science Foundation of China LY14B030003The project was supported by the Zhejiang Provincial Natural Science Foundation of China (LY14B030003) and the National Ministry of Science and Technology of China (2014BAD02B05)the National Ministry of Science and Technology of China 2014BAD02B05

Figures(6)

  • Co-based catalyst was prepared by impregnation method with SiO2 as the support. The effects of glucose and Pd on the structure and property of the catalysts were characterized by N2 low-temperature adsorption, XRD, SEM and H2-TPR. The reactive performance of the catalysts in F-T synthesis was evaluated in a fixed-bed reactor. The shape of Co3O4 crystal particle was changed by the added glucose and Pd. The addition of glucose increased the dispersion of Co3O4 species, and the addition of Pd promoted the reduction of the catalyst although its dose was only 0.0125%. The combination of glucose and Pd increased the dispersion and reduction of Co3O4 species on the catalysts simultaneously. As the result, both of the CO conversion and the selectivity of C5+ hydrocarbons increased in F-T synthesis reaction.
  • 加载中
    1. [1]

      DRY E M. The Fischer-Tropsch process:1950-2000[J]. Catal Today, 2002,71:227-241. doi: 10.1016/S0920-5861(01)00453-9

    2. [2]

      KHODAKOV A Y, CHU W, FONGARLAND P. Advances in the development of novel cobalt Fischer-Tropsch catalysts for synthesis of long-chain hydrocarbons and clean Fuels[J]. Chem Rev, 2007,107(5):1692-1744. doi: 10.1021/cr050972v

    3. [3]

      JIAO F, LI J, PAN X, XIAO J, LI H, MA H, WEI M, PAN Y, ZHOU Z, LI M, MIAO S, LI J, ZHU Y, XIAO D, HE T, YANG J, QI F, FU Q, BAO X. Selective conversion of syngas to light olefins[J]. Science, 2016,351:1065-1068. doi: 10.1126/science.aaf1835

    4. [4]

      ZHONG L S, YU F, AN Y L, ZHAO Y H, SUN Y H, LI Z J, LIN T J, LIN Y J, QI X Z, DAI Y Y, GU L, HU J S, JIN S F, SHEN Q, WANG H. Cobalt carbide nanoprisms for direct production of lower olefins from syngas[J]. Nature, 2016,538:84-86. doi: 10.1038/nature19786

    5. [5]

      CHENG K, KANG J C, KING D L, SUBRAMANIAN V, ZHOU C, ZHANG Q H, WANG Y. Advances in catalysis for syngas conversion to hydrocarbons[J]. Adv Catal, 2017,60:125-208.  

    6. [6]

      GAO Hai-yan, CHEN Jian-gang, XIANG Hong-wei, YANG Ji-li, LI Yong-wang, SUN Yu-han. Performance of Co/SiO2 catalyst for the synthesis of heavy hydrocarbons in F-T reaction[J]. Chin J Catal, 2001,22(2):133-137. doi: 10.3321/j.issn:0253-9837.2001.02.009

    7. [7]

      WOO M H, CHO J M, JUN K W. Thermally stabilized cobalt-based Fischer-Tropsch catalysts by phosphorous modification of Al2O3:Effect of calcination temperatures on catalyst stability[J]. ChemCatChem, 2015,7(9):1460-1469. doi: 10.1002/cctc.201402994

    8. [8]

      QIU Cheng-wu, WU Bao-shang, CHANG Qiang, LI Yong-wang. Effect of Ru addition on the performance of Co/SiO2 Fischer-Tropsch synthesis catalyst[J]. J Fuel Chem Technol, 2015,43(10):1230-1238. doi: 10.3969/j.issn.0253-2409.2015.10.011 

    9. [9]

      DEN OTTER J H, NIJVELD S R, DE JONG K P. Synergistic promotion of Co/SiO2 Fischer-Tropsch catalysts by niobia and platinum[J]. ACS Catal, 2016,6(3):1616-1623. doi: 10.1021/acscatal.5b02418

    10. [10]

      SONG H Q, ZHAO Q Z, ZHOU X, CAO Z Y, LUO M S. Selection of highly active and stable Co supported SiC catalyst for Fischer-Tropsch synthesis:Effect of the preparation method[J]. Fuel, 2018,229:144-150. doi: 10.1016/j.fuel.2018.05.025

    11. [11]

      JACOBS G, PATTERSON P M, ZHANG Y Q, DAS T, LI J L, DAVIS B H. Fischer-Tropsch synthesis:Deactivation of noble metal-promoted Co/Al2O3 catalysts[J]. Appl Catal A:Gen, 2002,233(1):215-226.  

    12. [12]

      SOLED S L, IGLESIA E, FIATO R A, BAUMGARTNER J E, VROMAN H, MISEO S. Control of metal dispersion and structure by changes in the solid-state chemistry of supported cobalt Fischer-Tropsch catalysts[J]. Top Catal, 2003,26:101-109. doi: 10.1023/B:TOCA.0000012990.83630.f9

    13. [13]

      ZHANG Y, HANAYAMA K, TSUBAKI N. The surface modification effects of silica support by organic solvents for Fischer-Tropsch synthesis catalysts[J]. Catal Commun, 2006,7:251-254. doi: 10.1016/j.catcom.2005.11.008

    14. [14]

      CHEN Hong-xian, NING Wen-sheng, CHEN Chun-hua, ZHANG Tian. Influence of Fe2O3 crystal phase on the performance of Fe-based catalysts for CO2 hydrogenation[J]. J Fuel Chem Technol, 2015,43(11):1387-1392. doi: 10.3969/j.issn.0253-2409.2015.11.015 

    15. [15]

      NING W, SHEN H, JIN Y, YANG X. Effects of weak surface modification on Co/SiO2 catalyst for Fischer-Tropsch reaction[J]. PLoS One, 2015,10(5)e0124228. doi: 10.1371/journal.pone.0124228

    16. [16]

      GARCÍA-TRENCO A, MARTÍNEZ A. A simple and efficient approach to confine Cu/ZnO methanol synthesis catalysts in the ordered mesoporous SBA-15 silica[J]. Catal Today, 2013,215:152-161. doi: 10.1016/j.cattod.2013.03.005

    17. [17]

      ZHANG Rui, PAN Xi-qiang, PAN Rui-juan, WANG Hong-mei, XIE Xiao-li, DUAN Chao, QI Xiao-feng. Preparation and synthesis of heavy hydrocarbon by Co/Al2O3 catalyst[J]. Ind Catal, 2018,26(9):48-52.  

    18. [18]

      JIANG Z S, ZHAO Y H, HUANG C F, SONG Y H, LI D P, LIU Z T, LIU Z W. Metal-support interactions regulated via carbon coating-A case study of Co/SiO2, for Fischer-Tropsch synthesis[J]. Fuel, 2018,226:213-220. doi: 10.1016/j.fuel.2018.03.195

    19. [19]

      WANG Kai, DAI Hui, LI Bei, WANG Biao, NING Wen-sheng. Advances in the research of hcp-co based synthesis catalysts[J]. Petrochem Technol, 2019,48(9):968-975.  

    20. [20]

      KHODAKOV A Y, GRIBOVAL-CONSTANT A, BECHARA R, ZHOLOBENKO L V. Pore size effects in Fischer-Tropsch synthesis over cobalt-supported mesoporous silicas[J]. J Catal, 2002,206:230-241. doi: 10.1006/jcat.2001.3496

    21. [21]

      TSUBAKI N, SUN S, FUJIMOTO K. Different functions of the noble metals added to cobalt catalysts for Fischer-Tropsch synthesis[J]. J Catal, 2001,199(2):236-246. doi: 10.1006/jcat.2001.3163

    22. [22]

      QIU X Q, TSUBAKI N, SUN S, FUJIMOTO K. Influence of noble metals on the performance of Co/SiO2, catalyst for 1-hexene hydroformylation[J]. Fuel, 2002,81:1625-1630. doi: 10.1016/S0016-2361(02)00088-1

    23. [23]

      SUN S, FUJIMOTO K, YONEYAMA Y, TSUBAKI N. Fischer-Tropsch synthesis using Co/SiO2 catalysts prepared from mixed precursors and addition effect of noble metals[J]. Fuel, 2002,81:1583-1591. doi: 10.1016/S0016-2361(02)00090-X

    24. [24]

      LI Cheng, MA Xiang-dong, YING Wei-yong, FANG Ding-ye. F-T synthesis of Co-Ru/Al2O3 catalyst[J]. Petrochem Technol, 2008,37(1):34-38.  

    25. [25]

      JIN Y, XIAO G Q, HAN Y Y, SUN F L, ZHANG D H, ZHANG Y H, LI J L, HONG J P. Products selectivity and reaction stability of cobalt-based Fischer-Tropsch catalysts affected by glow discharge plasma treatment and silica structure[J]. Catal Today, 2019,337:139-146. doi: 10.1016/j.cattod.2019.04.023

  • 加载中
    1. [1]

      Bin SUNHeyan JIANG . Glucose-modified bis-Schiff bases: Synthesis and bio-activities in Alzheimer′s disease therapy. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1338-1350. doi: 10.11862/CJIC.20240428

    2. [2]

      Yifeng TANPing CAOKai MAJingtong LIYuheng WANG . Synthesis of pentaerythritol tetra(2-ethylthylhexoate) catalyzed by h-MoO3/SiO2. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2155-2162. doi: 10.11862/CJIC.20240147

    3. [3]

      Xiaoyu ZhaoKai GaoSen XueWei RanRui Liu . Synergistic effects of oxygen vacancies and Pd single atoms on Pd@TiO2−x for efficient HER catalysis. Chinese Chemical Letters, 2025, 36(6): 110309-. doi: 10.1016/j.cclet.2024.110309

    4. [4]

      Mengli Xu Zhenmin Xu Zhenfeng Bian . Achieving Ullmann coupling reaction via photothermal synergy with ultrafine Pd nanoclusters supported on mesoporous TiO2. Chinese Journal of Structural Chemistry, 2024, 43(7): 100305-100305. doi: 10.1016/j.cjsc.2024.100305

    5. [5]

      Guang-Xu DuanQueting ChenRui-Rui ShaoHui-Huang SunTong YuanDong-Hao Zhang . Encapsulating lipase on the surface of magnetic ZIF-8 nanosphers with mesoporous SiO2 nano-membrane for enhancing catalytic performance. Chinese Chemical Letters, 2025, 36(2): 109751-. doi: 10.1016/j.cclet.2024.109751

    6. [6]

      Ke QiuFengmei WangMochou LiaoKerun ZhuJiawei ChenWei ZhangYongyao XiaXiaoli DongFei Wang . A Fumed SiO2-based Composite Hydrogel Polymer Electrolyte for Near-Neutral Zinc-Air Batteries. Acta Physico-Chimica Sinica, 2024, 40(3): 2304036-0. doi: 10.3866/PKU.WHXB202304036

    7. [7]

      Yang LiuJing LiangMengzhu ZhengHaoze SongLixia ChenHua Li . PD-L1/SHP2 dual PROTACs inhibit melanoma by enhancing T-cell killing activity. Chinese Chemical Letters, 2025, 36(6): 110317-. doi: 10.1016/j.cclet.2024.110317

    8. [8]

      Xinpin PanYongjian CuiZhe WangBowen LiHailong WangJian HaoFeng LiJing Li . Robust chemo-mechanical stability of additives-free SiO2 anode realized by honeycomb nanolattice for high performance Li-ion batteries. Chinese Chemical Letters, 2024, 35(10): 109567-. doi: 10.1016/j.cclet.2024.109567

    9. [9]

      Xingyan LiuChaogang JiaGuangmei JiangChenghua ZhangMingzuo ChenXiaofei ZhaoXiaocheng ZhangMin FuSiqi LiJie WuYiming JiaYouzhou He . Single-atom Pd anchored in the porphyrin-center of ultrathin 2D-MOFs as the active center to enhance photocatalytic hydrogen-evolution and NO-removal. Chinese Chemical Letters, 2024, 35(9): 109455-. doi: 10.1016/j.cclet.2023.109455

    10. [10]

      Long JinJian HanDongmei FangMin WangJian Liao . Pd-catalyzed asymmetric carbonyl alkynylation: Synthesis of axial chiral ynones. Chinese Chemical Letters, 2024, 35(6): 109212-. doi: 10.1016/j.cclet.2023.109212

    11. [11]

      Yanxin JiangKwai Wun ChengZhiping YangJun (Joelle) Wang . Pd-catalyzed enantioselective and regioselective asymmetric hydrophosphorylation and hydrophosphinylation of enynes. Chinese Chemical Letters, 2025, 36(5): 110231-. doi: 10.1016/j.cclet.2024.110231

    12. [12]

      Junhua LiTianci ShenYahui ZhuangYu FuYian Shi . Pd-Catalyzed highly regioselective migratory hydroesterification of internal olefins with formates. Chinese Chemical Letters, 2025, 36(7): 110599-. doi: 10.1016/j.cclet.2024.110599

    13. [13]

      Guan-Nan Xing Di-Ye Wei Hua Zhang Zhong-Qun Tian Jian-Feng Li . Pd-based nanocatalysts for oxygen reduction reaction: Preparation, performance, and in-situ characterization. Chinese Journal of Structural Chemistry, 2023, 42(11): 100021-100021. doi: 10.1016/j.cjsc.2023.100021

    14. [14]

      Min SongQian ZhangTao ShenGuanyu LuoDeli Wang . Surface reconstruction enabled o-PdTe@Pd core-shell electrocatalyst for efficient oxygen reduction reaction. Chinese Chemical Letters, 2024, 35(8): 109083-. doi: 10.1016/j.cclet.2023.109083

    15. [15]

      An LuYuhao GuoYi YanLin ZhaiXiangyu WangWeiran CaoZijie LiZhixia ZhaoYujie ShiYuanjun ZhuXiaoyan LiuHuining HeZhiyu WangJian-Cheng Wang . Nanomedicine integrating the lipidic derivative of 5-fluorouracil, miriplatin and PD-L1 siRNA for enhancing tumor therapy. Chinese Chemical Letters, 2024, 35(6): 108928-. doi: 10.1016/j.cclet.2023.108928

    16. [16]

      Yue SunLiming YangYaohang ChengGuanghui AnGuangming Li . Pd(I)-catalyzed ring-opening arylation of cyclopropyl-α-aminoamides: Access to α-ketoamide peptidomimetics. Chinese Chemical Letters, 2024, 35(6): 109250-. doi: 10.1016/j.cclet.2023.109250

    17. [17]

      Tao YuVadim A. SoloshonokZhekai XiaoHong LiuJiang Wang . Probing the dynamic thermodynamic resolution and biological activity of Cu(Ⅱ) and Pd(Ⅱ) complexes with Schiff base ligand derived from proline. Chinese Chemical Letters, 2024, 35(4): 108901-. doi: 10.1016/j.cclet.2023.108901

    18. [18]

      Lele FengXueying BaiJifeng PangHongchen CaoXiaoyan LiuWenhao LuoXiaofeng YangPengfei WuMingyuan Zheng . Single-atom Pd boosted Cu catalysts for ethanol dehydrogenation. Acta Physico-Chimica Sinica, 2025, 41(9): 100100-0. doi: 10.1016/j.actphy.2025.100100

    19. [19]

      Xiaoxiao HuangZhi-Long HeYangpeng ChenLei LiZhenyu YangChunyang ZhaiMingshan Zhu . Novel P-doping-tuned Pd nanoflowers/S,N-GQDs photo-electrocatalyst for high-efficient ethylene glycol oxidation. Chinese Chemical Letters, 2024, 35(6): 109271-. doi: 10.1016/j.cclet.2023.109271

    20. [20]

      Xiaofei NIUKe WANGFengyan SONGShuyan YU . Self-assembly of [Pd6(L)4]8+-type macrocyclic complexes for fluorescent sensing of HSO3-. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1233-1242. doi: 10.11862/CJIC.20240057

Metrics
  • PDF Downloads(9)
  • Abstract views(959)
  • HTML views(79)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return